
Introduction to the BE-CO Control System

2019 Edition

Stéphane Deghaye
Eve Fortescue-Beck

This is the compact version of the document without the proper page layout necessary for
printing. Should you wish to print the document, please use the full version.

Copyright c© 2020 CERN

PUBLISHED BY CERN

https://be-dep-co.web.cern.ch/

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License
(the “License”). You may not use this file except in compliance with the License. You may
obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND,

First edition, July 2017
This edition, January 2020

https://be-dep-co.web.cern.ch/
http://creativecommons.org/licenses/by-nc/3.0

ABSTRACT

This document is an attempt to fill the gap between the Control System, as provided by the
Controls (CO) group, and anybody who needs to work with the Control System. Providing
the glue between the particle accelerator physicists and the accelerators’ equipment, the
Control System is built on a 3-tier architecture made of hundreds of physical nodes and
tens of services. After a short introduction of the different physical tiers and of two basic
use cases (control of setting values and monitoring of accelerator variables), we cover
two core topics, the device-property model and timing. Next, the reader takes a complete
bottom-up tour through the controls infrastructure, discovering the technologies used and
the architectures in place. In order to give concrete examples, the main applications of this
infrastructure are also covered at the end of the document.

ACKNOWLEDGEMENTS

The authors would like to thank the following persons for their valuable input and support
during the writing of this document:

Michel Arruat, Vito Baggiolini, Jean-Claude Bau, Alastair Bland, Lukasz Burdzanowski,
Mark Buttner, David Cobas, Claude Dehavay, Felix Ehm, Philip Elson, Mathieu Gabriel,
Luigi Gallerani, Jean-Christophe Garnier, Enzo Genuardi, Tristan Gingold, Roman Gor-
bonosov, Eva Gousiou, Eugenia Hatziangeli, Frederic Hoguin, Greg Kruk, Dimitris Lam-
pridis, Frank Locci, Stephen Page, Maciej Peryt, Anastasiya Radeva, Chris Roderick,
Eric Roux, Pascal Le Roux, Javier Serrano, Ivan Sinkarenko, Wojtek Sliwinski, Marcin
Sobieszek, Tom Włostowski, Adam Wujek

Contents

Introduction . 9

Why a Control System? 10

I High-Level Concepts

1 Physical Layers . 12

1.1 Control-Room Computers 12
1.2 Back-End Servers 12
1.3 Front-End Computers 14
1.4 Databases 15
1.5 Remote I/O 15

2 Typical Use Cases . 17

2.1 Control of Setting Values 17
2.2 Monitoring of Accelerator Variables 19

3 Device-Property model . 21

4 Timing . 24

4.1 Sequencing 24
4.2 Events and Data 27
4.3 Cycle Selector 28

II Controls Hardware

5 FEC Platforms . 30

5.1 Open Enclosures 30
5.2 Closed Enclosures 31
5.3 Backplanes and Buses 32
5.4 CO-Supported Electronic Modules aka CO Kit 37
5.5 Fieldbuses 41
5.6 White Rabbit 46

6 Servers and Consoles . 50

6.1 Server Platforms 50
6.2 Consoles 54

7 Hardware Management . 55

8 Operating Systems . 58

8.1 Servers and Consoles 58
8.2 Front-End Computers 60
8.3 White Rabbit Switches 61

III Front-End Software

9 FPGA Gateware . 63

9.1 HDL Development Tools 64
9.2 Mock Turtle 65

10 Kernel Software . 67

10.1 Kernel Software Development Tools 69

11 FEC Applications . 72

11.1 Real Time Systems 72
11.2 FESA 73
11.3 Other Real-Time Frameworks 75
11.4 Generic FESA Classes 75

12 Low-Level Development . 77

12.1 Cheby 77
12.2 SILECS 79

IV Communications

13 Networking . 82

13.1 Ethernet Networks 82
13.2 RBAC 83

14 Middleware . 85

14.1 CMW-RDA 85
14.2 JMS 87
14.3 JAPC 89

V High-Level Software

15 Core Services . 94

15.1 InCA/LSA 94
15.2 CESAR 100
15.3 Logging 102
15.4 Data Concentrators 105
15.5 Unified Controls Acquisition Processing 106
15.6 Post-Mortem 107
15.7 Alarms 111

16 Automation . 114

16.1 Sequencers 114
16.2 SIS 116

17 User Interfaces and Tools . 120

17.1 Graphical Frameworks and Components 120
17.2 Generic Applications 127

18 High-Level Development Tools . 133

18.1 Best Practices 133
18.2 Build Process 134

VI Transversal Components

19 Monitoring, Testing and Diagnostics . 139

19.1 COSMOS 139
19.2 Low-level Test Tools 141

19.3 Tracing 144

20 Configuration . 145

20.1 Controls Configuration Database 145
20.2 Controls Configuration Data Editor 146
20.3 Controls Configuration Data Access API 147

VII Data Management

21 Layout . 150

22 Organising Accelerator Operation . 153

22.1 AFT 153
22.2 ASM 155

VIII Control System Applications

23 OASIS . 158

24 Timing . 162

24.1 Central Timing 163
24.2 Distributed Timing 163

IX Extras

List of Figures and Tables . 167

Glossary . 171

Acronyms . 178

Index . 185

Bibliography . 188

Introduction

This document is an attempt to fill the gap between the Control System as provided by the
BE-CO group within the Beams (BE) department and anybody who needs to work with the
Control System. You might have to refresh your understanding, or keep your knowledge
up to date in order to take some expert decisions. You might be a newcomer joining the
Controls group or part of the management. The idea behind the document is to allow the
reader to create a map of the different sub-systems and components which form the BE-CO
Control System and how they interact to fulfil the system’s role: the control and monitoring
of the accelerators. Last but not least, the document should also allow the authors to keep
up to date with the huge number of components, products and services provided by BE-CO.

We aim to cover all of the components, products and services provided by the Controls
group. But the effort made to control our accelerators could not be done in isolation
and there is a partnership between the Controls group and other partner groups such as
the Operations (OP), the Beam Instrumentation (BI) in the BE department, the Survey
Mechatronics Measurements (SMM) and the Electrical Power Converters (EPC) groups
from the Engineering (EN) and the Technology (TE) departments respectively. As much as
possible, the components, products and services provided by our partner groups are cited
for completeness but not described. This can be seen as an incomplete description as the
Controls group is mainly an infrastructure provider but the endeavour would be too big for
a team of two writers. This document is our view of the Control System as we understand
it from our discussions with the people responsible for each component. It might not be
the way the project leaders would have explained it but we hope it is factually correct and
understandable for the target audience.

We start our adventure with a high-level overview of the core concepts, a description of the
physical layers and typical data flows and operations. The reader who is only interested by

10 Introduction

an executive summary of the Control System could stop at this point. Then, in parts II to
VII, we take the reader on a bottom-up trip and look at all the infrastructure components
we provide. Readers willing to dig deeper may selectively read the chapters on specific
components, and the bravest could read them all. In many cases, the Controls group acts
as a user of the controls infrastructure, therefore in part VIII we study two examples of
full-stack applications of the Control System. The document is heavily cross-referenced
so that information can be accessed from many different entry points. In addition to the
table of contents at the start of the document, in part IX, there is a table of figures, a list of
acronyms, a glossary, and an index. All have page numbers referencing where the entries
can be found in the text. The glossary focuses on non-CERN specific computer science
terms, and CERN-specific terms not related to controls. There is also a bibliography for
further reading.

Why a Control System?
Before even looking at how the CERN accelerators’ Control System is designed, we should
ask ourselves: Why do we need a Control System at all? Here are some explanations
in order to put the remainder of the document into perspective. Particle accelerators are
made of many components to control and monitor the beams produced. Those elements
can be grouped into sub-systems. To cite a few, there are power converters to feed the
magnets, which bend and focus the beam, RF amplifiers and cavities to accelerate and
bunch together the particles, instruments to measure the beam’s characteristics such as
its position, its profile and many others. In turn, the physicists and operators need to be
able to remotely control and monitor these elements; this is the role of the Control System.
Placed between the operators and the accelerator hardware, the Control System’s job is to
set reference values (aka settings) and states in active elements (e.g. power converters), to
read instruments, to monitor the health of sub-systems, and to diagnose faults, etc.

I

1 Physical Layers . 12
1.1 Control-Room Computers
1.2 Back-End Servers
1.3 Front-End Computers
1.4 Databases
1.5 Remote I/O

2 Typical Use Cases . 17
2.1 Control of Setting Values
2.2 Monitoring of Accelerator Variables

3 Device-Property model 21

4 Timing . 24
4.1 Sequencing
4.2 Events and Data
4.3 Cycle Selector

High-Level
Concepts

1. Physical Layers

When looking at the Control System as a whole, as shown in figure 1.1, one can identify
three physical layers and, therefore, we can describe the Control System as having a 3-tier
architecture. The top (or client) tier is a set of computers used by the operations teams and
equipment experts to run high-level graphical applications. The middle (or business) tier is
made of powerful servers running the server side of the high-level applications. The lower
(or front-end) tier is composed of embedded computers running real-time applications,
interacting with electronic boards to control and monitor the accelerator components.

1.1 Control-Room Computers
The control rooms’ computers are often referenced to as "consoles". The consoles run
high-level graphical applications (aka Graphical User Interfaces (GUIs)) that interact with
the other parts of Control System. The control-room consoles are Linux-based desktop
PCs and the vast majority of the GUIs are written in Java using the Swing graphical toolkit.
The users interact with the consoles via traditional means i.e. keyboard, mouse and one or
several screens as shown in figure 1.2. More information on the consoles can be found in
section 6.2.

In addition, for the operators working in the CERN Control Centre (CCC), which is the
main control room, wall screens displaying live status information about the accelerator
complex are installed (see section 17.1.3).

1.2 Back-End Servers
The back-end servers are rack-mountable, multi-Central Processing Unit (CPU) PCs
tailored for 24/7 operation. Typically installed in the Controls Computer Room (CCR) next
to the CCC, these Linux servers are file servers or run the server-side or business logic of the

1.2 Back-End Servers 13

Figure 1.1: The Control System’s three-tier architecture

Figure 1.2: CERN Control Centre’s consoles and wall screens

14 Chapter 1. Physical Layers

high-level applications. Most of the server processes are written in Java and communicate
with the GUIs using Java-specific protocols such as Remote Method Invocation (RMI)
and Java Message Service (JMS). Figure 1.3 shows an enclosure (standard 19-inch rack-
mountable) with 14 servers. More details on the servers and the operating system they
run can be found in section 6.1 and chapter 8 respectively. Furthermore, the control
applications deployed on the application servers are discussed in part VIII.

Figure 1.3: 19-inch enclosure with 14 servers running the controls business logic

1.3 Front-End Computers
The Front-End Computers (FECs) are also rack-mountable chassis based on different
industrial standards such as Versa Module Europa (VME), PCI Industrial Computer
Manufacturers Group (PICMG) 1.3, Compact Peripheral Component Interconnect (PCI),
etc. For reliability reasons, they are single-board systems without screen, keyboard or
hard drive; they only contain a CPU, memory and interfaces (network and bus bridge).
In 2008, we decided to shift to the INTEL architecture and Linux and renovate all of the
installations based on PowerPC CPUs running LynxOS. In 2019, we eventually finished
upgrading of all of the FECs. The main purpose of the FECs is to perform the low-level
real-time control and acquisition of the accelerator hardware. Figure 1.4 shows a VME
crate containing a CPU board (far left), two timing receivers and 4 analogue function
generators (2 fast and 2 slow). Readers interested by the hardware aspects of the front-end
computers can find out more in chapter 5. The software side, operating system, kernel
software, and real-time applications are explained in chapters 8, 10 and 11 respectively.

1.4 Databases 15

Figure 1.4: Front-End Computer with some electronic modules

1.4 Databases
Usually, databases are considered to be part of the lower/resource tier. However, in the
Control System, databases are omnipresent and are somehow connected to all of the layers.
The front-end layer takes configuration data from the database, high-level application
server and graphical clients are data-driven by the databases. To highlight that fact, as
in figure 1.5, we often represent the databases as a vertical layer serving the three tiers
directly.

1.5 Remote I/O
It could be argued that the Control System is actually a 4-tier system. In many cases,
the interface towards the accelerator hardware is not directly in the front-end chassis but
remotely accessed using a fieldbus. So, if the three tiers are based on physical nodes, then
the remote Input/Output (I/O) could be considered as a 4th tier: the I/O tier. Nevertheless,
to simplify, we consider them to be in the front-end tier and the fieldbus that connects them
as an extension of the front-end computer.

Programmable Logic Controllers (PLCs), which have been around for quite a long time,
can be considered as remote I/O. More recently, a project to ease the development of
remote I/O by providing a communication module and a modern fieldbus was launched by
the group [18]. Figure 1.6 depicts the proposed architecture.

16 Chapter 1. Physical Layers

Figure 1.5: The databases are in the resource tier but they interact with all the layers

Figure 1.6: Architecture of the remote I/O tier

2. Typical Use Cases

Now that we have an overview of the structure of the Control System’s nodes, it’s in-
teresting to understand the fundamental data flows and use cases. There are many data
exchanges during the accelerators’ operational periods but it is sufficient to describe just
two fundamental use cases to understand the Control System.

2.1 Control of Setting Values
The control of setting values, which outside the Control System context are commonly
known as reference values, is the main use case to control the accelerator hardware. Its
data flow is from top (the operator) to bottom (the accelerator hardware). We define
a setting parameter as the smallest controllable element in the Control System. Some
parameters have a direct hardware correspondence (low-level parameters) while other
represent higher-level concepts.

Let’s imagine that an operator in the control room wants to change the value of a high-level
setting parameter for which there is an algorithm to transform the high-level value into
several hardware (low-level) values. Figure 2.1 shows the various components involved
in the use case. The steps of the interactions are numbered (Step 1, Step 2, etc.) so that
it is easy to follow the explanations on the drawing. One can identify the physical layers
described in the previous chapter. In green, we have the Graphical User Interface (GUI)
running in the console in the control room. In yellow, there is the back-end server and the
database. Finally, the light-blue box represents the front-end computers. There are three
front-end computers and, for each, the software and hardware components are represented
separately. Figure 2.1 also introduces a new actor, the timing system. The timing system
will be described in details in chapters 4 and 24, but for this overview, it is sufficient
to know that the timing system issues specific events at specific moments of the beam
production cycle. The front-end computers are able to receive and decode these events.

18 Chapter 2. Typical Use Cases

The first step involves the user (e.g. a physicist or an operator) and the GUI. The user wants
to set a high-level parameter (PHL1) to a new value x. The user enters x and sends the new
value. After some validation of the data, e.g. it does not exceed the maximum value defined
for the parameter, the GUI sends the new value to the middle tier process (step 2) using
one of the protocols that we support (see part IV for more on the communication protocols
and middleware). In step 3, the server processes the change request (aka trim request).
The server uses the database to understand how to proceed; are there other parameters
related to this one, which algorithm to apply to transform the value... In this example,
the high-level parameter is linked to three low-level parameters (PLL1, PLL2, and PLL3).
The server computes the new values a, b, and c for the low-level parameters respectively.
Before sending the new settings further down, the server stores the new parameter values
(x, a, b, and c) into the database (step 4). This allows us to keep track of all the actions
taken and to recreate the state of the accelerator at any point in time. The back-end server
sends the new values to the front-end computers (step 5). Upon reception, the values are
validated by the real-time applications and stored locally. The real-time software must
wait for the go-ahead of the timing system as hardware values cannot be changed at any
time. At the appropriate moment in the accelerator cycle, the timing system sends an event
which is received and decoded by the real-time applications (step 6). The Real-Time (RT)
applications write the new values into the hardware (step 7), potentially after an additional
transformation of the data to fit the hardware representation. The accelerator hardware
now has the new value as decided by the Control System’s user.

Figure 2.1: Control of setting parameter’s value

2.2 Monitoring of Accelerator Variables 19

2.2 Monitoring of Accelerator Variables
While the ability to control the accelerator parameters is primordial, it is actually a use case
that is used only a few times per hour. Indeed, once the accelerators are set up and produce
beams with the required characteristics, the accelerator settings are only changed slightly
for further optimisation or during accelerator study sessions (aka Machine Development
(MD)). On the other hand, the monitoring of the accelerators’ components is performed
continuously in cycles, less than once every second in some cases. In addition to its
repetition rate, monitoring also produces much more data.

Before going into details, we should differentiate between on-line monitoring and off-line
monitoring. The first is more like streaming values directly to the end user while the
second decouples the acquisition and analysis part. However, we can look at both scenarios
together, as only the last steps are different.

Acquisition value streaming

In the use case depicted in figure 2.2, the user receives a continuous stream of acquired
data. This allows him to ensure that the accelerator performs as expected and gives quick
feedback after having changed a control value.

Figure 2.2: Acquisition value streaming use case

The timing system is continuously delivering events that are used to trigger the acquisitions
of the various accelerator elements (step 1). On top of that, the timing system also delivers
events that are intercepted by the real-time applications and instructs them to read the
acquired values (step 2). Note that, like all timing events, the "Read now" event has a
timestamp that is very important to allow the correlation of data originating from different
sources at different locations. Next (step 3), the real-time applications access the hardware

20 Chapter 2. Typical Use Cases

and read the low-level values. After some conversions and association with the event
timestamp, the RT applications publish the updated acquisitions over the network (step 4).
The server receives the data from the different sources and uses the timestamps to group the
data belonging to the same acquisition cycle into a single set. Before sending the data to the
GUI (step 5), some post-processing is done. A wide range of post-processing exists, from
single value comparison to more advanced computation to create high-level acquisition
parameters, similar to those described in the control use case. In this example, the values
are simply enhanced with status information, allowing the user (step 6) to ascertain that
the system is behaving as expected.

Acquisition value logging

Given the large amount of data produced, it is clearly impossible to manually scrutinise
every value for every cycle. On the other hand, it is paramount that we can analyse past
events and look at trends. This is why, in addition to acquisition value streaming, we also
perform acquisition value logging. The first four steps of this use case are exactly the
same as the previous use case. The main difference is that the acquired values are not
post-processed and streamed directly to the user, but instead, they are stored in a database.
This is depicted by the step 5 in figure 2.3 where one can see the values and the time at
which they were acquired are sent to the database. The steps 1 to 5 are then repeated
continuously, without user intervention, based on the rhythm given by the timing system.

Figure 2.3: Acquisition value logging use case

Even up to 20 years later, a user can query values from a given date at which an acquisition
was done. In our example (step 6), the user enters the variables to retrieve along with
the date and the GUI sends the request to the middle-tier server. The server retrieves the
requested data from the database (step 7) and sends it to the GUI for further analysis by
the user (step 8).

3. Device-Property model

The device-property model defines the structure, as well as the operations and their
behaviours, required for the exchange of data between the low-level software and the
high-level software. The two fundamental concepts are the device and the property. It is a
straight-forward object-oriented model: each piece of equipment is a device, for example,
a power converter is a device, a beam current transformer is a device, etc. A device has
properties and one can read (get operation), write (set operation) or monitor (subscribe
operation) a property. As in object-oriented languages, objects are instances of classes and
therefore devices are instances of classes as well. It is at the class-level that properties are
defined with their content and the operations they support. As a result, all devices of a
given class have the same properties and behaviour. A property contains one or several
value-items1, much like a C structure contains attributes. Each value-item has a basic type
(double, int, char, etc.) that can be a scalar, an array or a 2D array. Figure 3.1 represents
a simplified class diagram of the device-property model. The device-property model has
been used for more than 20 years and has evolved over time and continues to do so. For
example, the early versions did not have the value-item concept and properties held a
single value. The device-property model described below is based on the FESA3 V4.0
meta-model. Other implementations may vary slightly.

There are three types of properties (setting, acquisition, and command) and each type
limits the operations available. The main usage of setting properties is to allow upper
layers to send hardware settings to the FEC layer. The typical usage of an acquisition
property is to send values acquired by the hardware to the high-level component. The
command property, as its name indicates, is to model commands that are given to the
FEC software. The setting property can be read and written. The value-items of a setting

1In the high-level components and libraries, a value-item is called a parameter or a field. As this chapter
is dedicated to low-level software, we decided to use the low-level software term value-item.

22 Chapter 3. Device-Property model

Figure 3.1: Device-property model class diagram

property can all be read but some of them may not be writable. This is typically the case for
value-items providing additional information about another value-item of the property. For
example, the value-item voltage, representing the voltage produced by a power converter,
has a sibling value-item voltage_max representing the maximum voltage allowed. The
first item can be written but the second cannot. An acquisition property can only be
read and therefore all its value-items are read-only. Similarly, as a command property
can only be written, all its value-items are write-only. In addition, since it is possible to
have commands without any parameters, a command property can be defined without
value-items. Figure 3.2 summarises the different property types.

Figure 3.2: Types of properties

The readable properties can also be monitored (or subscribed to). When somebody
subscribes to a property, they register their interest in receiving updates whenever the
property is refreshed. By convention, the rate at which the property is notified and updates
are sent depends on the property type but also on the device’s attributes. Setting properties
are normally notified only after a set operation, as their values do not change otherwise.

23

Acquisition properties can be notified after every accelerator cycle or only whenever
something interesting happens. When a subscription is created, the FEC software is
expected to immediately send the current value of the subscribed property. This is called
the first update and is used to initialise the subscriber. For multiplexed properties, several
first updates, one per timing user, are sent to the subscriber. The subscriber can specify a
selector in addition to the device/property to be monitored. This selector is used to filter
the updates and only send those that are of interest.

In order to be able to control the hardware following the instructions of the timing system,
the FEC software needs to have access to all of the settings for all of the timing users.
However, even if the accelerator is time-multiplexed, not all settings are; the properties and
the devices can be defined as multiplexed or not. When accessing a multiplexed property,
the client must specify a selector, similar to the one given for a subscription. It is important
to note the difference between selectors for set/get and subscription operations. For the
subscriptions, the selector is only used for filtering updates i.e. choosing the updates to
be sent to a particular client. However, for the set/get calls, it is used to de-multiplex the
values. As mentioned in section 4.1, the timing user is employed for the value multiplexing
and, therefore, only selectors based on the timing user can be provided in set/get calls. The
same constraint applies to subscriptions to setting properties, as they are only updated on a
set and, therefore, the update filtering is not possible on other timing fields.

4. Timing

CERN’s accelerator complex is comprised of 12 different machines 2, as shown in figure 4.1.
The beam’s energy increases as it is transferred from one accelerator to the next. The
system to control the accelerator equipment is highly distributed. In order to synchronise
the accelerators and optimise the performance of the whole complex, a sophisticated timing
system is required.

We can separate the timing system into two levels; the beam scheduling and the event and
data distribution. The beam scheduling, or sequencing, is about deciding which beam to
produce in a given accelerator at a given time. The event and data distribution is about
sending the right events at the right moment to the equipment, along with data related to
the cycles being produced.

In this chapter, we focus on the timing concepts that are required to understand how the
components of the Control System work and interact with each other. The implementation
details are given in chapter 24 and, for further reference, the reader can consult [40].

4.1 Sequencing
The Large Hadron Collider (LHC) experiments are the main focus for physics at CERN,
but there are also many other particle beam users. In addition to the next accelerator in
the chain, almost all accelerators also have one or more direct clients. For example, the
PS Booster (PSB) provides beams to ISOLDE, the Proton Synchrotron (PS) provides
beams to the Anti-proton Decelerator (AD), the East Area and the Neutron Time-Of-Flight
facility (nTOF) experiment, etc. Furthermore, the time required to produce a beam can
vary significantly from one accelerator to the next, and while the accelerator N is producing

2From 2017, CTF3 was converted into a new facility called CLEAR.

4.1 Sequencing 25

Figure 4.1: CERN’s accelerator complex

its beam, the accelerator N-1, which provided the beam, is potentially inactive, as depicted
in figure 4.2.

Figure 4.2: Unoptimised usage of the accelerators

Due to the requirements of handling multiple clients per accelerator and optimising the
duty cycle, an advanced timing system has been put in place. The timing system allows
accelerator operators to schedule different beams in the different accelerators and optimise
the particle throughput. As depicted in figure 4.3, the accelerators continuously switch
between producing different types of beams and as a consequence, the Control System
has to dynamically re-programme the hardware. This behaviour is commonly referred to
as time-multiplexing but the term Pulse-to-Pulse Modulation (PPM) is also often used at
CERN.

The main group of machines forms the LHC Injector Chain (LIC). The LIC is made of the
LINAC2, PSB, PS and SPS for the proton chain and the LINAC3, LEIR, PS and SPS for

26 Chapter 4. Timing

Figure 4.3: Accelerators are time-multiplexed

the ion chain. The other accelerators such as AD and ELENA are independent and are only
coupled to the LIC for beam transfers [24]. The LHC is also separate, from a timing point
of view since, as a collider, it works with fills rather than cycles. An LHC fill is made of a
filling phase, an acceleration phase, and a collision phase, which can last several hours. In
the remainder of this chapter, we focus on LIC scheduling as it is the most sophisticated.

The operators in the control room create and send the beam sequence for all the LIC
accelerators to the central timing. The sequence is continuously repeated until it is changed.
At runtime, the central timing collects information from external sources, such as magnet
interlocks, beam requests, etc. to decide whether the programmed beams can be executed.
The behaviour of the central timing is described by equations (aka FIDO equations),
which evaluate the external conditions according to internal logic. For each beam, each
accelerator executes one or several cycles in order to take the beam from the upstream
machine, accelerate it, and deliver it to the next one in the chain. In the Control System,
a cycle is represented as a timing user. A timing user has a length, which is always a
multiple of a 1.2-second basic period. Figure 4.4 represents an LHC 25-nanosecond beam,
as scheduled in the PSB, PS, and SPS. Note how the PSB and the PS execute several cycles
for a single SPS cycle. In this example, the PSB cycles take 1 basic period (1.2 second),
the PS cycles take 3 basic periods (3.6 seconds) and the SPS cycle takes 11 basic periods3

(13.2 seconds). Figure 4.5 represents the same beam from a controls perspective with the
correct timing user names for the different cycles.

Figure 4.4: The LHC 25ns beam in the PSB, PS, and SPS

The concept of a timing user, or simply a user, is very important and present in most of the
Control System’s components. All of the accelerator multiplexing is done using the user
as a demultiplexing key. Even though the final goal is to produce beams and the central
timing schedules beams, the Control System acts on users. For a given beam sequence, the
set of users in a given accelerator is called the supercycle, as it is a cycle of cycles.

Creating the accelerator complex’s beam schedule is not an easy task, as the beam structure
can be quite complicated. Fortunately, the operators have a graphical tool to help them
specify what they want to execute in a Beam Coordination Diagram (BCD).

Whenever the conditions to produce a given beam are not met, the central timing skips
it. To avoid wasting time, the operator can specify spare beams (i.e. a spare user in each
accelerator) that can be produced instead, as depicted in figure 4.6.

3The actual LHC25NS user in the SPS is longer

4.2 Events and Data 27

Figure 4.5: Timing users producing the LHC 25ns beam

Figure 4.6: Normal and spare cycles

The rules of execution for the spare beams are identical to those of the normal beams.
When a spare beam cannot be played either, the central timing schedules it, but without
particles.

There are two main situations where the normal/spare mechanism is very useful. The first
one is when the beam needs to be setup or improved, but its next destination is not available.
In this case, the spare beam is the same as the normal one, but the destination is set to a
beam dump. The second use case of normal/spare is when we can serve more particles to a
destination by replacing a single multi-user beam by several smaller beams. This happens
when a single 2.4-second cycle for both the east area and the nTOF experiment is replaced
by two 1.2-second cycles exclusively for nTOF whenever the east area does not request or
cannot take the beam.

4.2 Events and Data
Once the central timing has decided what will be produced next, it communicates this
information to the rest of the Control System using events and a data stream called the
telegram.

Typical timing events are the main events in a particle accelerator’s cycle such as start-cycle,
injection, ejection, etc. Events in the central timing can be linked to one another and it is
easy to create groups of events all related to a parent event (the virtual event). For example,
the master-injection event is linked to other events such as the forewarning-injection, 900
milliseconds before injection, and the warnings 10 and 20 milliseconds before injection.
Changing the injection time will automatically change the other events. The Central
Timing events (CTIM) are distributed on the General Machine Timing (GMT) network and
received by the timing receivers installed all around the accelerator complex. Local-event
software, Local Timing events (LTIM), runs on the timing receivers and produces bus
interrupts and electrical pulses. Thanks to the combination of generic hardware and highly
configurable software, the distributed timing system is very flexible and many different
schemes can be implemented, from the simple repetition of a CTIM to complex pulse-burst
generation with RF clock resynchronisation.

There are several pieces of information attached to a timing user. The most important
one is its name but the telegram also contains its length, its destination, its position in

28 Chapter 4. Timing

the super-cycle, and other low-level timing-specific values. Each piece of information is
transported in a telegram group as a 16-bit value due to the technical constraints of the GMT
network. The old TeleGraM (TGM) library exposes the raw values to the clients without
any formatting and therefore is not user-friendly. To improve the situation, the latest timing
library (TimDT) hides the telegram groups and instead exposes the timing fields that have
already post-processed values. For example, the LHC energy that is available as a telegram
group with the encoding "1 bit equals to 120 GeV" is directly available as a timing field
with its value in GeV. The current situation is not yet homogeneous and the low-level
Control System (Front-End Software Architecture (FESA), etc.) already works with the
new timing fields, but most of the high-level Control System is still based on the telegram
group.

4.3 Cycle Selector
As explained in the previous section, the concept of the timing user is omnipresent in the
Control System. Therefore, one needs a common way to indicate the timing user one wants
to use in the various Application Programming Interface (API)s. A timing domain defines
a timing environment with one or several accelerators. A supercycle is attached to the
timing domain rather than the accelerators; in other words, one can schedule cycles (one at
the time) in a timing domain. While most accelerators have their own independent timing
domain, the small linacs (LINAC2, LINAC3, and LINAC4 are part of the PSB (LINAC2
and LINAC4) and LEIR (LINAC3) timing domains. It is important to not confuse the
accelerator name and the timing domain. It is a nuance that often leads to confusion
especially since some accelerators and some timing domains share the same name (e.g.
SPS).

Every timing domain has several telegram groups, as explained in section 4.2, and every
group has a unique name in its domain. The most common group is USER and contains
the name of the timing user. Depending on the domain, one has groups such as DEST for
destination, PARTY for particle type, or ENG for the current LHC energy.

A cycle selector, often known as a selector, is a triplet separated by dots such as XXX.YYY.ZZZ.
The first part is the timing domain’s name such as PSB, CPS, LHC. The second element is
the telegram group’s name, for example USER or DEST. The last part is the value of the
telegram group one is interested in. If one wants to access devices in the PS accelerator
for the user LHC1, one must write CPS.USER.LHC1. CPS is the timing domain the PS
accelerator is in and one wants the LHC1 user. As mentioned earlier in the chapter, the
accelerator multiplexing is done with the user as a key, therefore, most operations (get,
set) can only be done with USER-type selectors. Nevertheless, in the case of subscrip-
tion, one can use another telegram group to select one or several cycles. For example,
CPS.DEST.SPS selects all the users with the SPS as destination.

II

5 FEC Platforms . 30
5.1 Open Enclosures
5.2 Closed Enclosures
5.3 Backplanes and Buses
5.4 CO-Supported Electronic Modules aka CO Kit
5.5 Fieldbuses
5.6 White Rabbit

6 Servers and Consoles 50
6.1 Server Platforms
6.2 Consoles

7 Hardware Management 55

8 Operating Systems . 58
8.1 Servers and Consoles
8.2 Front-End Computers
8.3 White Rabbit Switches

Controls
Hardware

5. FEC Platforms

The Front-End Computers’ (FEC) main mission is the low-level control and acquisition of
data from the accelerator hardware. A FEC is a rack-mountable electronics enclosure, built
to survive in an industrial environment. Generally, it is comprised of a chassis, a backplane,
a power supply and in some cases a fan tray. Its modular design allows the use of electronic
extension boards, which are plugged into the backplane. These boards interface with the
accelerators’ equipment to provide control and acquisition through electrical signals. The
main board is a diskless Single Board Computer (SBC) that has all the usual components
that can be found in a desktop computer: a CPU, some Random Access Memory (RAM),
bus controllers and bridges towards other buses (e.g. North PCI bridge, PCI to VME bus...).
The SBC is plugged into a designated slot in the backplane to control the other extension
boards. FECs conform to one of several bus standards that are chosen depending on an
application’s specific technical requirements (e.g. the data rate, cost) and the availability
of ready-to-use modules. Over the years, the controls group has added support for several
standards and we regularly look at the market evolution in order to offer an optimised
range of solutions. The latest front-end platform survey is available on the BE-CO wiki
space 4. In addition to the different bus standards, the FECs can be categorised as either
open or closed enclosures. Figure 5.1 depicts the FEC platforms’ family tree indicating the
standards currently supported or used in the controls group, as well as how the standards
relate to each other.

5.1 Open Enclosures
Open enclosures allow easier access to extension boards than closed enclosures, which
require disassembly in order to change modules. A typical open-enclosure is a metal
chassis with the front face removed through which the extension boards are inserted and

4https://wikis.cern.ch/display/HT/Future+Front+End+Platforms

https://wikis.cern.ch/display/HT/Future+Front+End+Platforms
https://wikis.cern.ch/display/HT/Future+Front+End+Platforms
https://wikis.cern.ch/display/HT/Future+Front+End+Platforms

5.2 Closed Enclosures 31

Figure 5.1: Family tree of front-end platforms

clipped into place. Modules come in either 3U or 6U formats. The crates themselves can
be 8U in height (6U + 2U fan tray) with 17 slots for modules, or 4U or even 2U (which
position the extension boards horizontally) with 4 slots and 2 slots respectively. The power
supply is located at the back and the fan trays have an Ethernet connection to enable
remote diagnostics. Connections to external equipment can be done either directly on the
front-panel of the extension board or at the back of the chassis using a Rear-Transition
Module (RTM).

As with any electronic crate, open enclosures come with their challenges. Electronic
boards dissipate heat and need cooling, produce electro-magnetic noise and need shielding,
and are plugged into the chassis and need firm fixations. In order to ensure the optimal air
flow through the crate and to limit electro-magnetic noise coming in and out, empty slots
should be closed with a front panel. Figure 1.4 shows an example of an open enclosure
without the empty slot covered. The advantage of easy to install modules can also be
a potential weakness. Modules can suffer from bad or deteriorating contacts caused by
vibrations and dust etc. Therefore, it is necessary to screw the modules in, to bind them
firmly to the chassis.

5.2 Closed Enclosures
Open enclosures are generally more suited to our environment but are expensive. Some
applications have a lot of installations with a common configuration and only require a
few extension boards. For example, the LHC World Factory Instrumentation Protocol
(WorldFIP) gateways have only one timing receiver and up to two WorldFIP bus controllers.
In these situations, it does not make sense to install full VME crates as there are more

32 Chapter 5. FEC Platforms

cost-effective solutions available.

Following a market survey, the controls group decided to support the PICMG 1.3 closed
enclosures, which are System Host Board (SHB) based on PCI-SIG standards (PCI, PCI-
express). In order to facilitate the installation and maintenance, pre-mounted systems are
always kept in stock.

In practice, ready-to-use chassis can be problematic. If a fault occurs, the diagnostic is
harder, as a complete exchange is not always desirable. Removing all the cables and the
chassis can be time consuming and therefore one wants to ensure the faulty element is the
chassis before exchanging it. To facilitate the diagnostics and maintenance, some chassis
are mounted on rails and fitted with longer cables. This solution increases the overall cost
and is therefore normally reserved for laboratories, where equipment is changed frequently
and access to the boards is more important.

Closed enclosures can also suffer from heat dissipation problems, as discovered when
using fast digitiser modules, which typically draw a lot of current and therefore produce
a lot of heat. Unlike the open enclosures, which push the air flow between the extension
modules, the PICMG 1.3 chassis attempt to extract the hot air without controlling the
air flow. In order to solve the heat problem, more powerful fans had to be installed and
modules had to be ordered with additional on-board fans.

5.3 Backplanes and Buses
As described above and depicted in figure 5.1, the chassis can have backplanes using
different standards. The next chapters describe the standards supported by BE-CO.

5.3.1 VMEbus
Versa Module Europa (VME) is the oldest bus standard supported by BE-CO. It is an
asynchronous parallel bus, originally developed for the Motorola 68000 line of CPUs.
VITA manages the different versions of the VME standards (http://www.vita.com).
The success of the standard stems mainly from the fact that many Commercial-Off-The-
Shelf (COTS) modules are available and that interoperability is guaranteed by the standard,
which means that any VME crate can be used with any VME module.

VME has a separate 32-bit data bus and 32-bit address bus, plus a few control lines to
manage the protocol. In addition to the read and write operations, VME supports modules
requesting the attention of the CPU through interrupts.

VME is the least sophisticated protocol supported by BE-CO, and it is possible to describe
the read cycle in simple terms (figure 5.2).

In the first step, the CPU puts the address on the address bus from which it wants to read.
The address corresponds to one memory space in one, and only one, module in the crate.
As this is a read cycle, the Write (WRITE) and Interrupt Acknowledge (IACK) lines are
negated. SinceVME is an asynchronous bus, the CPU asserts the address strobe line, to
indicate to the modules that the address is now available for reading. The CPU asserts one
or both data strobes to indicate where on the data bus it will expect to read data. As soon as
the slave is ready, it puts the data on the data bus and asserts the data transfer acknowledge

http://www.vita.com

5.3 Backplanes and Buses 33

(DTACK) line. Once the CPU has read the data it negates the strobes to indicate that it has
read the data. In turn, the module will negate DTACK to indicate the end of the cycle. If at
any moment, something goes wrong, the bus error line is asserted and the cycle is aborted.

Typical read-write access on a VME system is approximately 1us per register. For cases
where higher throughput is required, the Block Memory Access (BMA) is available to
transfer a block of memory from the VME module to the Single Board Computer (SBC).
BMA can work in combination with Direct Memory Access (DMA) allowing us to transfer
data from a VME boards to the RAM without using the CPU.

Figure 5.2: VME read cycle

64-bit Evolution (VME64x)

One of the major evolutions of the VMEbus was its extension to a 64-bit address and data
bus. In addition, this new version also provides software configuration and geographical
addressing, reducing the configuration required when installing a new module. Prior to
this, it was necessary to set the base address, interrupt number, address modifier etc. using
physical jumpers on the modules. With VME64x, the configuration of the module is done
through software and the addressing of the configuration space is derived from the slot
number of the module in the crate. This feature obviously makes maintenance easier but it
removes the possibility of replacing a module by installing another module in another slot.

Other evolutions of the VME standard, including VME Switched Serial (VXS) and VME
PCI eXtension (VPX), are sometimes used in niche applications in other groups e.g. the
BE department’s Radio Frequency (RF) group. Even though our VME64x SBCs are used
in these crates, these platforms are not supported by the controls group.

34 Chapter 5. FEC Platforms

VME Single Board Computers
The first Single Board Computers (SBC) used in the VME crates were based on the
Motorola 68k family running the hard real-time LynxOS operating system. The following
generations were based on PowerPC CPUs, still running LynxOS. The latest generation,
the MEN A20, represents a 180-degree turn for the group as we decided to move to an
Intel CPU (Intel Core 2 Duo for the A20) and to drop LynxOS support and migrate to
Scientific Linux CERN; a version of Linux with low-latency patches. Modern Intel CPUs
provide a multi-lane PCI Express (PCIe) bus to interface with the external world and, in
order to connect the CPU to the VME, a bridge is required to translate the VME protocol
to PCIe. For the MEN A20, a COTS bridge, the TSI148 chip, is used. The next generation
of VME SBCs will show yet another increase of CPU power and memory space as the
MEN A25 has 4 cores (8 threads) and at least 8 GB of RAM. For the MEN A25, it was
decided to use an Field-Programmable Gate Array (FPGA)-based open-source design for
the VME bridge to avoid the recurring problem of chip obsolescence [17]. Compared to
the RIO2 PowerPC available at the end of the 90s (32-bit single core clocked at 75 MHz
with 16 MB RAM), the front-end computers now have many more capabilities than when
the system was designed.

5.3.2 VXI
Based on the VMEbus, VME eXtension for Instrumentation (VXI) defines additional bus
lines for timing and triggering, but also protocols for configuration; something that was
missing from the original version of VME. The standard specifies different mechanical
requirements with modules that are longer and wider than the usual VMEs. VXI chassis
can only host a maximum of 13 modules, which is significantly less than our biggest
21-slot VME chassis.

The only system that has ever used VXI in the BE-CO Control System is Open Analogue
Signal Information System (OASIS) (see chapters 11 and 23 for more details). Even though
the VXI chassis used in OASIS were for analogue signal digitalisation, we never actually
used the timing and trigger lines. On the other hand, we benefited from the geographical
addressing for configuration. VXI is now deprecated and the current plan is to renovate
all of the VXI-based installations during Long Shutdown 2 (LS2), therefore ending the
BE-CO’s support of the platform.

5.3.3 PCI and Compact PCI
Created in the early 90s, the Peripheral Component Interconnect (PCI) local bus standard
defines a synchronous (single clock) parallel bus. The controls group started supporting
PCI, first with Compact Peripheral Component Interconnect (CompactPCI) and later plain
PCI in the early 2000s, as we were facing two challenges with the VMEbus. The first
reason was bandwidth limitation and unavailability of COTS modules for fast signal
digitalisation. The second issue was the platform cost, as explained in section 5.2. As PCI
was originally associated with Intel based computers, the adoption of PCI also marked the
introduction of the Intel CPUs in the Control System, which was PowerPC-driven at the
time.

There are several variants of the PCI bus and the PCI-SIG consortium specifies all PCI
related standards. Like the VME bus, interoperability is guaranteed by the standards. A

5.3 Backplanes and Buses 35

PCI bus can be 32-bit or 64-bit and is synchronous to a single bus clock at either 33 MHz
or 66 MHz. With these clocks and word sizes, the PCI bus can transfer data from 133 MB/s
to up to 533 MB/s (a normal VME64x access will have an 8 MB/s throughput). Similar
to the VME bus, the PCI bus supports slaves requesting the master’s attention through
interrupts but, unlikeVME, the interrupt lines are configured automatically, making the
installation and maintenance simpler. Another key difference with respect to the VME is
that the address bus and data bus lines are shared, meaning that during a read/write cycle
the lines will first be address lines and then data lines. This makes the basic operations
more complex as a state machine is now required. A simplified description, such as the
one presented for the VME bus, is clearly outside the scope of this introductory document.

One interesting feature of the PCI bus is that it uses reflected-wave switching, which
impacts the maximum size of a PCI bus. When the backplane is longer, such as in
the CompactPCI chassis, PCI bridges chaining several buses have to be installed in the
backplane. The modules in the chassis will then be on different buses. Fortunately, this
chaining is transparent for the user, who only requires a bus and a slot number. In addition,
while there are no jumpers to configure with the PCI, as we had to with the VME, a PCI
chassis does not have a standardised correspondence between a logical and a physical
location. Each module is inserted into a slot on one of the buses and the relationship
between the physical slot number and the pair PCI bus/slot depends not only on the
backplane but also the CPU type. As we want the software to be configured based on
physical slot, we need to maintain a mapping per CPU type and per crate type.

One of the main drawbacks of the PCI-based front-ends in our environment is the relative
fragility of the connections when compared to real industrial solutions. Indeed, the PCI
connection uses the Printed Circuit Board (PCB) tracks directly to make contact with
the backplane; there is no connector soldered on it. The CompactPCI standard improves
robustness as it specifies connectors for both the modules and the backplanes.

5.3.4 PXI
PCI eXtension for Instrumentation (PXI) is the equivalent to VXI for PCI. However,
contrary to VXI, which was based on an already rugged industrial standard, PXI adds
that aspect to PCI (see drawbacks in the PCI chapter). In addition, PXI defines lines for
triggering and clock distribution.

The PXI support in BE-CO is quite marginal, as this platform is mainly used together
with LabVIEW. A few systems have been deployed operationally for analogue signal
acquisition in the LHC and kicker controls in other accelerators.

5.3.5 PCIe
With every evolution bringing higher performance, the parallel buses, such as PCI, fell
out of fashion due to inherent limitations such as power consumption and bandwidth
limitations (half-duplex shared bus and timing issues). Modern standards are based on
serial buses and PCI Express (PCIe) is one of them. PCI Express supersedes PCI in
many aspects including higher throughput, lower I/O pin count and native hot-plug feature.
Similar to the other standards described above, the PCIe specifications are maintained by
organisations and/or interest groups (PCI-Special Interest Group (SIG) for PCIe).

36 Chapter 5. FEC Platforms

The key difference between PCI and PCIe is that PCIe is based on point-to-point links
i.e. there are separate connections between the host and the different modules rather than
having a bus shared among all modules. This topology brings many advantages such as
concurrent access, no bus arbitrations, less EMC noise and lower power consumption.
Furthermore, for high-bandwidth applications, one can combine several lanes to form a
link (or interconnect). The standard defines slots and connectors with widths from 1 to
16 lanes (32 in the latest versions). So, for the version 1.x, which supports up to 2.5 Giga
transfers per second (2.5 GT/s), it goes from 250 MB/s with one single lane to 4 GB/s if
one uses the 16 lanes.

Physically, each lane is made of two differential pairs to provide the full-duplex byte
stream. Of course, the PCIe connector contains more pins for power supplies and a few
control signals. A 1-lane connector contains 18 pins but the 4-lane contains only 32 pins,
which is easier to handle and more economical than the high pin count found in VME
and PCI. It is important to know that a module with fewer lanes can be installed in a slot
supporting more lanes. Indeed, the protocol negotiates the maximum number of lanes to
be used between the host and the modules. This feature gives more flexibility when one
selects a backplane configuration. As for the PCI bus, an explanation of the PCIe hardware
protocol and its different layers is too complex and outside the scope of this document.

BE-CO has supported PCIe for a few years in the front-end layer, offering Kontron
computers with several PCIe slots with widths up to 16x.

One advantage of a serial bus over a parallel one is that it is possible to put the bus on a
cable or even a fibre. This opens up the possibility to physically distribute modules of a
front-end computer outside of the computer enclosure. Today, this possibility is neither
supported nor used by BE-CO.

5.3.6 MicroTCA4
Every 5-10 years, the technologies used in the front-end computers have to be re-assessed,
both in terms of the evolution of our needs, as well as the market. Hardware module
and platform obsolescence means that the group needs to perform regular technology and
market surveys in order to ensure that we are still able to buy hardware. A study completed
in 2018 indicated that microTCA.4 is an interesting platform that BE-CO aims to fully
support by 2021.

Micro Telecommunications Computing Architecture (mTCA).4 is a subsidiary specifi-
cation of mTCA, which itself is a standard that was originally intended to work with
Advanced Telecommunications Computing Architecture (ATCA) systems, aka PICMG
3.x. For our applications, ATCA is not required and, mainly due its huge form factor, its
price is prohibitive. The mTCA backplane is made of high-speed serial links in a star
architecture, plus a few lines directly connecting the individual slots. The centre of the star
is the MicroTCA Carrier Hub (MCH). The MCH provides the connectivity between the
cards (aka Advanced Mezzanine Card (AMC)) and is similar to a switch. In addition, the
MCH manages commodities such as the voltages, fans, diagnostics, etc. mTCA provides
reliability by supporting redundancy and diagnostics. The power supplies are redundant
and the AMCs are hot-pluggable with power-requirement management by the MCH; the
AMC tells the MCH how much power it needs and, if it accepts, the MCH sends the power

5.4 CO-Supported Electronic Modules aka CO Kit 37

on the backplane. For the diagnostics, Intelligent Platform Management Interface (IPMI)
is used and can be exposed, for example, with Simple Network Management Protocol
(SNMP).

mTCA leaves many details open; for example, one can use Ethernet, PCIe, Serial RapidIO,
etc. on the serial links. Such openness limits the interoperability and therefore extensions
are defined. mTCA.4, the mTCA extension for physics, further constrains the platform
with specific definitions for the backplane, the cards, clocks and trigger lines, etc. For the
backplane, out of the 8 lines available between each AMC slot and the MCH, mTCA4
imposes lines 0 and 1 to be Gigabit Ethernet, lines 2 and 3 are reserved for the daisy chain
and the 4 remaining lines are dedicated to the FatPipe, which is PCIe x4. mTCA.4 also
adds the possibility to use Rear-Transition Modules (RTM) which can be useful when the
board real-estate (148.8 mm by 181.5 mm) is too limited and/or when more front-panel
connectors are needed.

5.3.7 Future Technologies such as PXIe
As the reader might have guessed, PXI Express (PXIe) is the PCI Express equivalent to
PXI. In its latest edition, the PXIe standard specifies system bandwidth to up to 24 GByte/s.

PXIe is seen as a potential future platform that the BE-CO group will support. At the time
of writing the 2019 edition, there is a collaboration project between BE-CO and EN-SMM
in order to provide a prototype of a suitable PXIe offer, i.e. a crate with power supply and
a system board running the BE-CO software stack, by 2021.

5.4 CO-Supported Electronic Modules aka CO Kit
Most of the controls use cases require a hardware component in their implementation.
Indeed, particle accelerators are analogue and we need to supply and monitor analogue
signals to and from the accelerator equipment. However, the Control System is digital and
the hardware modules provide the interface between the two worlds.

As many use cases can be decomposed into common building blocks, the BE-CO group
provides a catalogue of ready-to-use, supported hardware modules. For each of them, we
offer the electronic board, its kernel device driver and access library, and a test program.
For some of them, we optionally provide the FESA class (see section 11.2). Thanks to this
approach, the Control System users save integration time and the procurement and support
is centralised.

The BE-CO hardware kit provides generic functions such as:

• Time-to-Digital Converter (TDC);
• Analogue-to-Digital Converter (ADC);
• Analogue function generators;
• Pulse production and pulse delay;
• Analogue and digital Input/Output (I/O);
• Fieldbus controllers for various bus standards;
• Etc.

38 Chapter 5. FEC Platforms

For most of the functions, we have a range of modules with different characteristics e.g.
we have about 10 different ADC boards with different sampling speeds and resolutions.

Some modules with more CERN-specific functions are developed in-house, but, whenever
possible, we buy COTS from commercial vendors. If a piece of hardware is specific
to a particular partner group, it makes sense that they design, integrate, and support the
module themselves. Of course, we recommend that whenever common needs are identified,
CO-standard, supported modules are used.

In recent years, we have pushed the reusability and modular approach even further by
factoring out the common features found in almost all of the modules into a carrier board.
The carrier board provides the bus access (VME, PCIe, or PXIe), the memory, and an
FPGA to implement the board’s logic. Mezzanine boards are then used to fulfil the specific
(mainly analogue) part.

In order to split the labour in a rational way, BE-CO provides the infrastructure i.e. carrier
boards, whilst the partner groups may design the mezzanines. In general, carrier boards take
longer to design and require a different set of skills than those needed for the mezzanines
and this reinforces the decision to distribute the work.

As we want to interact as much as possible with industry, we needed to choose a standard
between the carrier board and the mezzanines. Vendors want to reduce economic risks and
a standard helps in that respect. When the choice was made (in around 2010), the only one
available was an ANSI/VITA standard called FPGA Mezzanine Card (FMC) [2, 14].

5.4.1 FMC Modules
FMC is an agnostic standard that brings a modular I/O approach to FPGA design. The
BE-CO group has decided to use the Low Pin Count (LPC) connector, which has 160
pins, for cost reasons. Out of the 160 pins, 68 are user-defined. Alternatively, the user-
defined pins can be used as 34 differential pairs. The High Pin Count (HPC) version of the
connector offers more lines and, in addition, a few serial transceiver pairs and clocks. It is
worth noting that the HPC and LPC connectors are mechanically compatible. Figure 5.3
depicts an FMC mezzanine where one can see the FMC connector on the right and the
application-specific external connectors on the left.

Compared to other carrier/mezzanine options such as V-MOD (also used in the BE-CO
hardware kit), the FMC carrier is more sophisticated. As already mentioned, the carrier
hosts an FPGA that contains the digital logic for the specific function of the board. Note
that the carrier/mezzanine pair cannot be exchanged without altering the FPGA code
and risking burning outputs in the FPGA and the mezzanine’s components. To avoid
this situation and provide mezzanine identification, the standard reserves pins for an
Inter-Integrated Circuit (I2C) bus.

The CERN-designed carrier boards feature an FPGA (Xilinx Spartan-6), 256 MB of RAM
(2 x 256 MB for the VME version), and a Small Form-factor Pluggable (SFP) socket
that can be used, for example, to plug a 1 Gb/s optical transceiver into the board. The
VHDL code to access the memory and the external connectivity (bus, transceiver) is readily
available so that only specific business logic has to be implemented. One of the target
applications of the optical transceiver at CERN is the integration with the White Rabbit

5.4 CO-Supported Electronic Modules aka CO Kit 39

Figure 5.3: Analogue-to-Digital Converter (ADC) based on the FMC mezzanine format

network, but other applications are possible. The FPGA configuration Bitstream can be
uploaded from the bus interface, allowing remote re-configuration of the carrier board.

BE-CO supports carrier boards with bus interfaces to VME and PCIe called Simple VME
FMC Carrier (SVEC) and Simple PCIe FMC Carrier (SPEC) respectively. In addition,
the EN-SMM group designed and supports a PXIe carrier (Simple PXIe FMC Carrier
(SPEXI)). The VME version gives access to the VME crate’s RTM and provides for two
mezzanine sites, whilst the other carriers have only one. In addition to the carrier boards,
BE-CO designs mezzanines for generic functions such as ADC, TDC, fine delay and digital
I/O.

We observed the advantages of the carrier/mezzanine approach and specifically FMC,
during the redesign of the WorldFIP master board. Instead of designing a complex PCB,
we only had to develop the FPGA code to implement the communication stack and a
mezzanine to convert the signals between the FPGA digital levels and the WorldFIP
standard.

On the other hand, the overall cost of the FMC approach is higher if modules have to be
produced in large quantities. The real estate on the mezzanine board is also fairly limited
with a standardised size of 69 mm by 76.5 mm; a problem that can be solved in VME crates
by using a Rear-Transition Module (RTM) even though not all of the pins are available.

5.4.2 Non-FMC Modules
Even though the advantages of the FMC approach are clear, there are two situations where
we still rely on single board implementations: for the COTS modules and older CERN-
made boards. For the latter, we still support several boards that were designed before the
FMC era. For example, the Current Timing Receiver family (CTRx) is based on single
PCB boards available for different backplanes (VME, PCI). In addition, we still support
modules that were re-designed around the year 2000, such as the function generators

40 Chapter 5. FEC Platforms

(CVORB, CVORG) and the PCI version of the MIL-1553 bus controller (CBMIA). In
2019, in the BE-CO group, only boards which are designed to be drop-in replacements for
older boards are foreseen to be developed outside the FMC approach.

There are also situations where a CERN-driven design is not appropriate. It can be because
there are already perfect solutions available as COTS or because the requirements are such
that they would require a level of expertise that we do not have in the group. For this reason,
we also support COTS modules. Most of the COTS modules are Analogue-to-Digital
converters, as this function is very common and the market has plenty to offer, but as one
reaches the highest sampling rates and resolutions, these modules require experts in the
domain to develop. To cite a few, our catalogue contains the Agilent/KeySight digitisers
with sample frequencies up to 8 GSa/s and the more modest INCAA VD80 at 200 kSa/s.

5.4.3 Development Philosophy

For many years, our modules were procured in two different ways. They were either
designed, manufactured, and tested at CERN or commercial boards, based on proprietary
designs. Neither solution was fully satisfactory. The amount of work required to produce
and support our own boards quickly exceeded our human resources. With COTS, we
found ourselves in vendor-locked situations, being unable to buy discontinued products
and exposed to price hikes. It was also difficult to influence priorities when it came to new
features and bug fixes.

We can define two orthogonal aspects for our development policy. One axis is the open-
source versus proprietary design and the second is whether we rely on companies to provide
part of the service (commercial versus non-commercial). Table 5.1 gives the advantages
and disadvantages of the four possible combinations.

Table 5.1: Pros and cons of different development philosophies

It is clear that an open-source commercial approach is preferable. In this way, we can
sub-contract part of the design, manufacturing, testing and support to companies for a fee,
whilst staying in full control of our products and avoiding vendor-locking.

In order to counteract companies’ risk aversion, we developed the CERN Open Hardware
license,5 a legal framework that allows people to share electronic designs [8, 14].

5https://www.ohwr.org/licenses/cern-ohl/license_versions/v1.2

https://www.ohwr.org/licenses/cern-ohl/license_versions/v1.2

5.5 Fieldbuses 41

5.5 Fieldbuses
A fieldbus is an industrial real-time network used to control distributed agents that are
typically of limited power. Compared to Local Area Networks (LANs), fieldbuses are used
at lower level to connect intelligent actuators and sensors to more sophisticated supervision
systems such as a Front-End Computer. Figure 1.6 depicts the typical layout of the lower
tier based on a fieldbus. The BE-CO Control System has been based on fieldbuses since
the very beginning and, therefore, it is not surprising that we support several of them.

5.5.1 MIL-1553
Based on a military standard (MIL-STD-1553-B), MIL-1553 has been used in the Control
System since the middle of the 80s. It was initially chosen for its robustness; it was also
used in airplanes and ships. CERN’s implementations of MIL-1553 have diverged from
the standard over time, as it was adapted to our specific needs. In hindsight, with such
complex maintenance of critical installations in the injector complex, it would have been
better to have remained with the standard.

MIL-1553 is a simple multi-drop bus based on a 5-volt Manchester-encoded differential
signal, sent over a shielded twisted pair. A bus has one master, known as a Bus Controller
(BC), and up to 32 slaves, connected through Remote Terminal Interfaces (RTIs), that
answer to the master in half-duplex with a throughput of up to 1 Mbit/s. To ensure galvanic
isolation and integrity of the bus, the agents are AC-coupled to the bus using transformers.
The bus is simply terminated by a 50-Ohm resistance in a stopper. MIL-1553’s messages
are 20 bits long and carry a 16-bit payload. The message integrity is ensured by a 3-bit
synchronisation field and a simple parity bit. There is no specific hardware for diagnostics,
meaning that we have to rely on software traces provided by the driver. According to
the standard, the bus is deterministic but, as we have many different slaves all with
slightly different firmware, the MIL1553 installations have become tricky to diagnose.
Furthermore, due to the lack of synchronisation service from the bus, typical installations
have a MIL1553 bus for data control and acquisition, as well as a set of copper cables to
transport between 1 and 5 timing pulses for the action synchronisation (e.g. start capacitive
charge, read current value, etc.). The misconfiguration of timing to either trigger bus
transactions or trigger equipment’s actions leads to complex synchronisation issues. This
sub-optimal setup has a lot of room for improvement and better solutions are described in
the next two sub-chapters.

MIL-1553 is now a deprecated fieldbus, but it is still used to control critical elements in the
injector complex. In 2019, some bus controllers remain installed in operational front-ends
and therefore we have to support MIL-1553 until these installations are renovated. For this
reason, and to regain full-control over the black box that the VME module had become,
we undertook the design of PCI master board in 2011; the so-called CBMIA.

5.5.2 WorldFIP
With the construction of the LHC, it made sense for CERN to standardise the fieldbuses
that were to be used in the new accelerator. In 1995, a working group studied the market for
available radiation-tolerant fieldbus solutions. In 1996, the group gave the recommendation
to use the WorldFIP fieldbus for applications in the LHC tunnel. Initially a French effort

42 Chapter 5. FEC Platforms

from the 80s, World Factory Instrumentation Protocol (WorldFIP) is a European open
standard (EN50170). Despite the fact that the WorldFIP design was not made with
radiation-tolerance in mind, tests showed a good performance of the node under radiation,
due to its relative simplicity and the chip technology used in the early versions (0.6 mm),
and this is why it was finally proposed as the radiation-tolerant fieldbus for the LHC.
Retrospectively, the choice was correct as the WorldFIP installations (>10’000 nodes
installed all around the LHC tunnel) have shown good robustness and reliability.

WorldFIP is a real-time fieldbus with a linear multi-drop topology. It is based on a
Master/Slave architecture where the bus’s access right is centralised by the Master, which
continuously distributes the access token to the slaves in a cyclic manner. The Master
runs on a dedicated processor that does not depend on the Front-End host computer; this
ensures the real-time performance. The Master can also receive an external timing signal
(from GMT) to which it synchronises the beginning of each cycle; like this WorldFIP
can provide distributed synchronised communication. Figure 5.4 depicts a typical CERN
topology. Although not used at CERN, WorldFIP supports multi-master configurations.
The protocol foresees four bit rates: 31.25 kb/s, 1 Mb/s, 2.5 MB/s, and 5 Mb/s. The 5Mbps
option is only available as a prototype and is not currently used by any equipment groups.
The WorldFIP standard also specifies the maximum cable lengths and number of slaves
per bit rate e.g. at 1 Mb/s, the maximum bus length is 1 km of copper with a maximum of
255 nodes.

Repeaters are used to either convert back and forth from copper to optical fibre or to extend
the maximum length of the bus. In the LHC, we typically use the optical fibres to descend
into the shaft where only straight-line paths are needed and where there are no agents. In
the tunnel, we use shielded twisted pair copper cables. The signal on the pair is a 5-Volt
differential with Manchester encoding and the agents are AC-coupled through transformers
ensuring the galvanic isolation from the rest of the bus.

WorldFIP uses a fixed-length cycle called a macrocycle. At CERN, depending on the
application, the macrocycle is between 20 milliseconds and 1 second long with a maximum
frame size of 124 data bytes. The macrocycle is divided into the deterministic traffic, the
event-type traffic, and the network management services. The structure of the deterministic
traffic is established when the system is put in place and is continuously repeated without
any possible modification. During this phase, the master sends a question frame to the
agents indicating which agent it is talking to, and whether the agent should produce an
answer or consume incoming data. When sending the answer, an agent can raise a bit to
indicate that more data are to be sent and that a slot in the event-type traffic should be
reserved for that transfer. The master can then allocate a slot for that message exchange
in one of the upcoming event-type phases, but not necessarily the next one. Figure 5.5
illustrates a typical WorldFIP macrocycle and that the event-type traffic and the network
management services are optional and can be omitted according to the application’s needs.
At CERN, some installations do not have event-type traffic but, as diagnostics of such
installations is of paramount importance, all of the WorldFIP installations have their bus
terminated by a special agent called the Diagnostic Agent for WorldFIP (FIPdiag). This
diagnostic agent is programmed to simply send back the data it received, but it is connected
to the bus through an attenuator. During the network management phase, in addition to
polling the presence of all agents, the FIPdiag is accessed and if its answer matches the

5.5 Fieldbuses 43

Figure 5.4: Typical CERN WorldFIP installation

question, we can consider that the bus installation is operational as the other agents are
closer to the master and connected without additional attenuation.

Figure 5.5: WorldFIP macrocycle

In recent years, it was decided to in-source both the WorldFIP master and the slave chip
(the so-called microFIP). The main reason to design a new slave chip, the nanoFIP6, was
that the latest versions of the microFIP were based on newer chip technologies (0.5 mm)
and the accidental radiation tolerance had been lost. Similarly, the master board and
accompanying software libraries could not follow the technology evolution such as the
arrival of multi-core CPUs in the FECs. Combined with the decreasing support from
the industry and the investment CERN had made in the technology, a project7 to design
and produce a new WorldFIP master board was launched [45]. The new master is based
on the FMC approach and the SPEC PCIe carrier board described in section 5.4.1. The
FPGA code uses the MockTurtle FPGA framework (see section 9.2 for details) that allows

6http://www.ohwr.org/projects/nanofip/wiki
7http://www.ohwr.org/projects/masterfip/wiki

http://www.ohwr.org/projects/nanofip/wiki
 http://www.ohwr.org/projects/masterfip/wiki

44 Chapter 5. FEC Platforms

the high-level part of the protocol to be implemented in C and run on soft-cores while
the low-level part (e.g. WorldFIP serializers/deserializers and Cyclic Redundancy Check
(CRC) computation) is kept in VHDL. Even though the new Master is a stripped-down
version of the WorldFIP protocol (e.g. no master redundancy), it is fully compatible with
all CERN applications. The new module has been massively deployed during the LS2
period.

After 10 years of operation, the WorldFIP installations have proven to be robust and reliable
and we plan to support the technology until the end of High-Luminosity Large Hadron
Collider (HL-LHC).

5.5.3 Powerlink
Support, in terms of fieldbuses, needs to evolve to cover the future needs of the equipment
groups. For new applications targeting the HL-LHC era, we need to introduce and centrally
support more performant and interoperable solutions, since the current bandwidth is a
bottleneck, being limited to 2.5Mbps.

The replacement of WorldFIP, which did not achieve the expected success in industry,
will most probably be Ethernet-based. Currently dominating the market are Industrial
Ethernet fieldbuses at 100Mbps, and several options are available such as EtherCAT,
EthernetIP, POWERLINK, and Profinet. The latter, from Siemens, is already used at
CERN in zones without radiation constraints, for example in cryogenic and collimator
controls. For the areas with high-radiation levels, none of these fieldbuses currently have
off-the-shelf radiation-tolerant solutions and a CERN-made design, applying radiation-
hardening techniques, is still required. It must be taken into account that the additional
complexity of Ethernet, with its many layers, may make it difficult to achieve the required
radiation tolerance.

In the space domain, organisations, such as the European Space Agency (ESA), require a
radiation-tolerant high-bandwidth fieldbus and rely on SpaceWire. This option was also
investigated but SpaceWire lacks interoperability with off-the-shelf equipment and, being
designed for spacecrafts, imposes constraints on the distance between nodes and total
segment length that are incompatible with large particle accelerators such as the LHC.

For these reasons, solutions such as POWERLINK, a very light protocol built on top of
Ethernet’s physical layer, are more appropriate. Furthermore, POWERLINK software
and firmware is both free and open source. Nevertheless, the master-based half-duplex
communication (aka "you speak when spoken to") can be seen as a limitation.

In addition, for cases requiring sub-nanosecond synchronisation outside radioactive areas,
the group offers White Rabbit, as explained in section 5.6. However, White Rabbit is not
technically a fieldbus, as it does not define the upper layers of the OSI model. For example,
it does not define cyclic exchange of data between several nodes; one would need to add a
protocol on top of White Rabbit for those tasks, such as White Rabbit Trigger Distribution
(WRTD), as described in section 5.6.1. Furthermore, due to White Rabbit’s very high
complexity, any radiation-tolerant design would be very challenging to make.

POWERLINK is very similar to WorldFIP. It provides macrocycles in the order of mil-
liseconds and synchronisation in the microsecond range. Its protocol is simple; the master

5.5 Fieldbuses 45

broadcasts a frame to the slaves, the concerned slave identifies with the request and replies
on the bus. This half-duplex mode ensures that there are no collisions and no loss of
determinism, due to the lack of contention.

Thanks to the use of standard 100Mb/s Ethernet, the non-radiation-tolerant hardware,
such as the Network Interface Controllers (NICs), can be bought off-the-shelf. Cables are
standard copper Ethernet cables and switches are agnostic to POWERLINK. All of the
diagnostic tools to monitor and analyse the POWERLINK traffic are also standard. For
longer distances, for example from the surface to the LHC tunnel, optical fibres must be
used, but again, standard optical-to-copper converters are available.

We plan to develop two slave FMC mezzanines, one for the radiation-free areas and a
second radiation-tolerant version. As for WorldFIP, the target radiation tolerance for
the electronics is 400 Gray. For the implementation of the physical layer, it should be
possible to use COTS chips, with the appropriate radiation tolerance. The POWERLINK
protocol will be implemented in a radiation-tolerant FPGA. Figure 5.6 depicts the overall
architecture of the FMC. As for WorldFIP, the components and the final design will
be validated by radiation test campaigns. The envisaged topology requires the slaves
to be daisy-chained. Therefore, each slave needs to act as a dual-port switch. While
this additional requirement is not complex to implement, one challenge is to ensure that
forwarding is still active, even when the slave is broken down or not powered.

Figure 5.6: POWERLINK FMC architecture

On the master-side, which always stays in radiation-free areas, two possibilities exist.
PLCs with native support for POWERLINK can be purchased from B&R but, as the
group relies on FECs to control fieldbuses, a PCIe master will also be developed. Even
though the master is a standard network interface card, it needs to be able to receive
a synchronisation pulse from the timing network in order to align macrocycles across
networks, as implemented for CERN’s WorldFIP networks.

46 Chapter 5. FEC Platforms

5.6 White Rabbit
Started in 2009, White Rabbit is a fully deterministic, Ethernet-based network solution
to design and implement distributed, hard real-time systems [59]. The main goals of the
project were to provide a technology which solves recurrent problems and limitations in the
current controls infrastructure. Firstly, we wanted the new generation of the GMT network
to have a much higher bandwidth to avoid multiple networks and improved diagnostics
thanks to a full-duplex network. In addition, we wanted to provide a solution for the
synchronisation problems we have with MIL-1553 installations, for which both data and
synchronisation links are needed with precise cross-configuration.

White Rabbit adds two extra services on top of Ethernet. Firstly, it provides a common
notion of time across all nodes with nanosecond precision. Secondly, it offers guaranteed
upper bound latency in message delivery. Thanks to these two features, it is possible to
design distributed systems that will produce synchronised distributed actions, provided the
command is given early enough.

The common notion of time is provided thanks to an improved version of IEEE 1588
(aka Precise-Time-Protocol (PTP)). The White Rabbit protocol evaluates the transmission
time so that the slave nodes can compensate the time needed for a message to reach them.
Figure 5.7 shows the PTP messages exchanged to synchronise the slave time with the
master time. At t1, the master sends a SYNC message that, upon reception, triggers
the recording of the current time (t2) in the slave. The master then sends a FOLLOW_UP
message containing the value of t1. t2 - t1 is the sum of the transmission delay and the
offset between the master clock and the slave clock. In order to isolate the clock offset,
the slave sends a DELAY_REQ at t3 to the master. The master precisely records the arrival
time of the message (t4) and sends the value in a DELAY_RESP message. The slave now
has all the variables required to determine its offset with respect to the master clock, which
is (t2 - t1 - t4 + t3)/2. While PTP has a precision of 1 microsecond, the White Rabbit
version offers a 1-nanosecond precision. Concretely, this means that no matter how long
the fibre is between the nodes, they will have exactly the same Coordinated Universal Time
(UTC), ticking in phase. This improvement of IEEE 1588 is itself in the process of being
integrated into revision 3 of the standard, under the high-accuracy profile.

Figure 5.7: PTP message exchange

5.6 White Rabbit 47

The message delivery’s upper-bound latency can be guaranteed thanks to a custom-designed
White Rabbit switch for which we can compute the delay it introduces. Furthermore, the
White Rabbit switches support 802.1Q, an optional part of Ethernet, which allows messages
to have priorities via a Priority Code Point. Figure 5.8 shows how the 802.1Q header is
inserted into an Ethernet frame. The figure also illustrates the Priority Code Point (PCP)
field which carries the message’s priority. For a given White Rabbit network and for the
highest-priority messages, knowing the longest path and the number of switches allows
us to determine the upper-bound latency for any such message in the network. In 2019,
the largest White Rabbit network deployed at CERN has an upper-bound latency of 100
microseconds. By combining the two features of a common notion of time and upper-
bound latency, we are able to produce pulses in phase, with a 1-nanosecond precision, that
are distributed around the LHC.

Figure 5.8: 802.IQ header in an Ethernet frame8

White Rabbit can also be used to do more than producing pulses. For example, we can
use it to distribute clocks in different points of an accelerator using the distributed Direct
Digital Synthesizer (DDS) approach, or we can also use it to distribute synchronous data
such an accelerator’s B field values. Also, since White Rabbit is based on Ethernet, it also
inherits its advantages and its weaknesses. For example, we cannot reach extremely low
latencies. On the other hand, we benefit from many powerful diagnostic tools and it is
straightforward to obtain node diagnostics using the SNMP protocol.

White Rabbit is foreseen to be used at CERN for several projects such as the distribution
of the main-magnets’ B-field and the new OASIS triggers’ distribution. In the long term, it
is foreseen that White Rabbit will gradually replace the ageing General Machine Timing
(GMT) distribution.

5.6.1 Trigger Distribution
Producing pulses in phase, with a 1-nanosecond precision, is exactly what the LHC
Instability Study Triggers (LIST) does. This application reproduces pulses generated in
one point in the LHC in several other points at CERN [63]. Whenever an event worth
studying occurs, a pulse is sent to one of the LIST input modules (a specialised version of
the FMC TDC). The incoming pulse is then time-tagged and the tag is sent over the White
Rabbit network. Thanks to the features explained above, we can then reproduce the trigger
pulse in many other locations with a minimum delay of 100 microseconds, which is the
upper bound latency of the network (the maximum delay is user configurable). Figure 5.9
depicts the network used to distribute the triggers. In 2019, the LHC Instability Study
Triggers (LIST) network has 7 operational nodes but can be extended with additional nodes
if necessary.

8based on work by Bill Stafford (own work) [CC BY-SA 3.0], via Wikimedia Commons.

https://creativecommons.org/licenses/by-sa/3.0/

48 Chapter 5. FEC Platforms

Figure 5.9: White Rabbit network for LHC Instability Study Trigger distribution

Building on the experience gained with LIST, the WRTD project was launched, aiming to
generalise the concepts required to build a network of distributed instruments. The LIST
API was very specific to the use-case and the implementation assumed that the underlying
hardware was a SVEC with a TDC and a fine-delay. Ultimately, WRTD should become an
extension of the Interchangeable Virtual Instrumentation (IVI) standard, which industry
can apply in their products, such as digitizers. IVI is an industrial standard managed
by a eponymous foundation, defining a classification of instruments, as well as a large
API to control them. Manufacturers package IVI drivers implementing the API with
their instruments. It should be noted that IVI does not make any assumptions about the
underlying layers, and as such, WRTD does not require the transport layer to be White
Rabbit. In theory, any transport could be used, on the understanding that other types of
network do not offer a common notion of time and upper-bound latency.

WRTD can be used in two different ways. In the first case, the timestamp of an event is
sent across the network and the receiving nodes roll back the acquisition history to isolate
the correct data. In the second case, the emitting node sends a timestamp in the future,
taking into account the network latency in order to produce synchronised pulses at the
receivers. The latter case will be applied in the OASIS triggering system, as explained in
chapter 23.

WRTD is a technology designed to support large networks and therefore appropriate
monitoring and diagnostics are available. The number of occurrences of an input or output
are logged, as well as the number of missed messages, typically because they arrive too
late. In addition, statistics such as average frequency of messages, minimum, average and
maximum latency of the various network paths are calculated.

The WRTD message format is based on an LAN eXtensions for Instrumentation (LXI)
standard, as depicted in figure 5.10. In 2019, only one event per message is sent in the

5.6 White Rabbit 49

header. In the future batching would be possible as the message payload is available,
however, this is not currently compatible with the LXI standard.

Figure 5.10: WRTD event message

In 2019, the focus is on producing a tabletop demonstrator of two oscilloscopes triggered
by same source but with different cable lengths (50m + 2.5km), in order to validate the
new reference designs and APIs and optimise the latency of the White Rabbit network. In
the near future, a SVEC-based VME module with two FMC-ADC mezzanines (100MSa/s)
a well as two VME modules with either two TDCs or two fine-delays will be developed.
Finally, there are also plans to develop another, faster, ADC with a sampling frequency of
up to 1GHz.

6. Servers and Consoles

6.1 Server Platforms
The server infrastructure provides three main functions: Network File System (NFS) file
servers, front-end computer boot servers and high-level application servers for Injector
Control Architecture (InCA), CERN Experimental Area SoftwAre Renovation (CESAR),
WinCC OA, etc. In the first two cases, the amount of storage is a priority while, for the
application servers, memory and CPU power are more important. In 2019, we have four
different solutions, the older generations, based on HP servers, which should be phased
out before the end of their 5-year warranty period, and the latest technology, for which we
insisted on a more generic solution, independent of a specific manufacturer.

The key characteristic of the server infrastructure is the necessity for 24/7 availability.
In addition, and contrary to other aspects of the Control System, the main maintenance
window is very small, being strictly limited to 3 days at the beginning of each year. At all
other times, interventions have to be as fast and transparent as possible and are applied only
to non-critical infrastructure services. The system must report issues so that interventions
can be scheduled.

For the storage-oriented solution, we used to use the HP ProLiant DL380 family but we are
gradually migrating to quad servers combined with Just a Bunch Of Disks (JBOD) enclo-
sures. Similarly for the application servers, the HP ProLiant BL460 family is progressively
being replaced by servers in the quad form-factor.

All solutions are rack mountable, which allows scalability and ease of maintenance. Also,
most of the components are duplicated and hot-pluggable, meaning that the Hard Disk
Drives (HDDs), Solid-State Disks (SSDs), fans and power supplies can be exchanged
without switching off the system. An advantage of the HP hardware is that CPUs, memory
and storage are completely interchangeable between the two families, making spare-

6.1 Server Platforms 51

part management easier. On the other hand, the new approach, treating hardware as
commodities, avoids a vendor lock-in situation.

The memory modules are based on Error-Correcting Code (ECC) to detect and correct
errors. In addition, the memory has more capacity than advertised so data can be automati-
cally relocated in case of failure.

6.1.1 HP ProLiant DL380
The HP ProLiant DL380 family is based on 2U enclosures. In the latest generation (GEN9),
it supports up to 24 x 2.5-inch HDDs without extensions. If additional HDD space is
required, PCIe connectivity to one or several external Redundant Array of Inexpensive
Disks (RAID) Host Bus Adapters (HBAs) is available. The hard-disk drives (HDD) are
server-grade disks spinning at 10’000 RPM with two sets of heads per disk to further
improve the performance. For data protection, we mirror the HDDs using a RAID 1+0
configuration. In special cases, RAID 5 and 6 may also be applied to larger storage arrays.
The DL380 family has 4 built-in LAN interfaces with a link speed of 1 Gbit, which can be
increased by adding an optional 10 Gbit interface.

Two generations of the DL380 family are currently deployed in production; Generation 8
(GEN8) and Generation 9 (GEN9). In 2019, ten DL380 computers are still in use for Java
application servers.

6.1.2 HP Proliant BL460
For the application servers, a high-density solution is required due to the high number of
CPUs needed and the physical space constraints. Therefore, we decided to use the HP
ProLiant BL460 solution, which is based on a 10U managed enclosure that can host up to
16 blades. In addition to the space efficiency, this solution is also more cost effective as
one enclosure and 16 blades cost significantly less than 16 individual DL380 computers.

Each blade is a complete computer with CPU, memory and storage. The BL460 is CPU-
power oriented with only two slots for disks and limited local storage (1.8 TB in RAID 1).
The HDDs are the same as those used in the DL380 family. The blade enclosure provides
power-supply redundancy; out of six available power supplies, up to three can be lost
without degrading the service. The BL460 family has 2 built-in LAN interfaces with a
speed of 1Gbit for generations G5 to G7 and 10 Gbit for generations GEN8 and GEN9. If
needed, a blade can be replaced by an extension module where a PCI or PCIe board can be
installed. The extension board is only visible to the adjacent blade and not all blades in the
enclosure. This feature is used in one of our installations to distribute accelerator timing
information locally.

In 2019, about one hundred blades are in operation and, as for the DL380 family, we
have both GEN8 and GEN9. They are named after the system they are used for, such
as cs-ccr-inca2, cs-ccr-cmw4... Figure 1.3 depicts an HP enclosure with 14 BL460 of
different generations. Figure 6.1 shows the internals of a blade server.

6.1.3 Quads and JBODs
In 2017, we took the strategic decision to treat server hardware as a commodity. The new
generation of server hardware is based on a 2U rack-mountable enclosure that can host

52 Chapter 6. Servers and Consoles

Figure 6.1: HP ProLiant BL460 - internal view

up to 4 servers, as shown in figure 6.2. We commonly refer to this hardware as a "quad
server". Whenever a high storage capacity is required, we take the "Just a Bunch Of Disks"
(JBOD) approach, connected to a quad server. The hardware is replaced as part of a 5-year
lifecycle, with regular calls for tender and yearly purchasing.

The enclosure provides fewer services than its HP counterpart, in this case, only redundant
power, ventilation, and mechanical support. Everything else is handled by the servers
themselves, or external network equipment. A server is a double-CPU computer with 2
Ethernet connections. The first connection is dedicated to the system, while the second
is used for IPMI monitoring and management. For the system connection, the highest
bandwidth possible is required, and therefore, in 2019, the servers are connected to 10Gb/s
Ethernet switches. On the other hand, the management connection doesn’t have any speed
requirements, but since it is used to administer critical systems, its connectivity is restricted
to a few selected machines.

Since the new enclosures offer fewer services than the HP blade enclosures, which had
integrated switches, the Information Technology (IT) department has now installed new
10Gb/s switches in the networking racks. This layout brings more complexity in terms
of cabling, because each server needs its own connection, but is more straightforward.
However, for the management connections, a switch is installed directly in the quad rack.

Every server has a few internal slots for drives, which are typically reserved for system
installation and application software. In 2019, a server comes with 2 SSDs of 960GB
that are configured in RAID 1. In some cases, additional SSDs are installed when only a
moderate increase in storage is required. In the other cases, a JBOD enclosure is installed.

The JBOD enclosure is 4U and rack-mountable. They are purchased fully-populated with
24 3.5" SATA hard drives of 6TB each; giving the whole enclosure a raw capacity of

6.1 Server Platforms 53

Figure 6.2: Quad servers

144TB. The JBOD enclosure provides redundant power supplies and a Serial Attached
Small Computer System Interface (SCSI) (SAS) connection. On the server-side, the JBOD
enclosure is connected through a Host Bus Adapter Card (HBA). The HBA allows a
connection to 2 JBOD enclosures, but we currently do not require such large amounts of
storage.

High-availability is vital, therefore, the enclosures are configured using software RAID 6,
where 2 drives are dedicated to parity. An additional disk per enclosure is a hot spare. Since
we rely on software RAID, the server connected to the JBOD is responsible for calculating
the stripes and parity. Figure 6.3 shows a typical example of RAID 6 systems, where one
can see the two drives dedicated to parity. This configuration allows us to survive up to 2
disk failures. This redundancy scheme was chosen because the recovery time is quite long
and we wanted to ensure that redundancy is not lost during the reconstruction. Thanks to
the hot spare, the array returns to full RAID without human intervention.

On top of the software RAID, we use Linux’s Logical Volume Manager (LVM), which
allows us to hide the physical volumes, thus providing flexibility for extensions.

Since the beginning of 2018, the NFS servers and NXCALs storage machines are based
on JBODs. For NFS, this allowed the number of servers to be consolidated from 10 to 4
machines. We now have 172 quad servers in operation.

9By Colin M.L. Burnett [CC BY-SA 3.0], via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/3.0/

54 Chapter 6. Servers and Consoles

Figure 6.3: RAID 6 on 5 disks9

6.1.4 Installation and Administration
The server infrastructure is mainly installed in the CCR with just a few machines installed
off-site for backup and fast disaster recovery purposes.

The racks used today are standard 19-inch wide racks. We have a mixture of HP racks and
other generic racks, which are deeper, in order to handle future formats of quads. In cases
where increased cooling is required, water-cooled external doors are fitted.

Each rack receives a double mains distribution; one from the Swiss network and one from
the French network. In case of mains failure, Uninterruptable Power Supplies (UPSs) can
provide power for one hour at full capacity. Afterwards, three diesel generators can take
over the power generation.

The operating system installed on most of the machines is the BE-CO Community En-
terprise Operating System (CentOS) 7. In some cases, older versions such as Scientific
Linux CERN (SLC) 6 are used. In the near future, CentOS 7 will be deployed on all the
machines. Chapter 8 gives more details on the subject.

6.2 Consoles
For the consoles installed in the CCC, the local control rooms and the technical buildings,
we use standard desktop PCs from the IT department. These PCs have Intel Active
Management Technology (AMT) (similar to IPMI), which allows remote access and
reboot. A typical configuration for the control rooms is a PC with three screens.

As more than 600 PCs are installed, to limit the number of interventions we require all of
the components inside the PC to have a Mean Time Between Failure (MTBF) higher than
100’000 hours (approx. 10 years).

Most of the consoles run Linux (CentOS7 in 2019) but there are also a few Windows
computers to run industrial applications.

7. Hardware Management

In the previous chapters we have described the hardware provided by BE-CO. Furthermore,
BE-CO also provides a service to procure, install and repair this hardware.

Equipment groups request hardware installations by specifying their requirements through
an online web portal. Before the installation can be performed, the surrounding infras-
tructure must be in place (e.g. cables, racks). Then, the hardware is prepared and asset
management aspects are addressed. Specific pieces of hardware are taken out of the stock
and physically installed. The last stage of the process is to bill the equipment groups for
the hardware.

The first implementation of this process was based on a simple web form, which sent the
request by email. It wasn’t linked to any other data service, but it allowed the formalisation
of the requests, departing from the old habit of receiving ad-hoc requests over the phone
or email. The current system is based on Service Now (SNOW), a commercial service
management portal that is heavily used by other services at CERN. This tool retrieves data
from other sources, such as catalogue data from the asset management tool, Enterprise
Asset Management System (InforEAM) and Racks from the Layout Database (see chap-
ter 21). InforEAM is provided by the Computerised Maintenance Management System
(CMMS) service from the Accelerator Coordination and Engineering (ACE) group in the
EN department. SNOW provides a standard, user-friendly interface, suitable for many
profiles of users. Other options widely used in the group, such as Jira, would not have
offered the integration required.

Figure 7.1 depicts the hardware installation workflow, as implemented in SNOW, thanks
to the help of the Service Management and Support group (SMB-SMS). As represented
on the diagram, the installation request is also forwarded for information to the Machine
Controls Coordinator (MCC) to allow them to follow the progress of the task. In Work
Task 1 (WT1), the request is assigned to a member of the Hardware Installation team and

56 Chapter 7. Hardware Management

analysed in order to identify the type and availability of the hardware required, as well as
the need for any additional services such as cabling, networking etc. For the latter, BE-CO
relies on other departments such as EN and IT. This may delay the installation, as cables
or fibres may have to be laid. Once the infrastructure is fully present, the hardware is
checked out of the stores in the asset management system, using the kiosk application and
registered as part of an installation. Finally, the configuration is recorded in the Controls
Configuration Database (CCDB) (see chapter 20).

Figure 7.1: Hardware installation workflow

In the second phase (WT2), the Asset Manager takes over the request and ensures that
the asset management has been handled properly in WT1. Indeed, there are several cases
where the asset management cannot be done during WT1, such as when equipment is
dismantled and put back into stock. In addition, the Asset Manager ensures that the stock
levels are sufficient and triggers procurement if necessary. This role is important to ensure
data quality and was particularly relevant during the early days when there were teething
issues, for example a module which is in stock but is not registered in the database.

As nothing comes for free, the Infrastructure Finance Officer receives the hardware instal-
lation request in order to establish the invoice. At CERN, billing between groups is done
through an Inter Departmental Transfer (TID) document in CERN’s Electronic Document
Handling System (EDH).

The decision to launch a procurement order depends on stock levels and forecasts based on
consumption statistics and pending installation requests. For long shutdowns the PLAN
tool is used to collect needs, in advance, from all equipment groups. Procurement is a
difficult task for several reasons. Firstly, electronic components can have large lead-times,
four to six months in some cases. Then, we have to deal with obsolescence policies from

57

the manufacturers, where we are left with two choices; either to buy a supplementary
quantity to cover our future needs, or to design a new module with modern components,
the latter taking approximately 2 years. For example, in LS2 (2019-2020), there are several
large consolidation projects happening in the group, such as the pulse repeater renovation,
for which hundreds of new modules need to be procured and available before the shutdown
begins.

Unfortunately, hardware modules sometimes break down and therefore we need to be
organised in order to intervene efficiently, so that the accelerator’s availability can be
kept as high as possible. For CO systems, every accelerator has a dedicated hardware
installation expert, who is called in case of hardware failure. After installation of non-CO
systems, the equipment groups become the first-line operational support. They return
broken modules to BE-CO for repair and hold a small stock of spare parts. Most of the
time, the repairs are not billed, except for MEN CPUs and expensive modules such as fast
digitisers. This policy works well to keep the machine downtime low, but adds another
challenge to the asset management, as BE-CO is not always aware of changes and relies
on being notified by the equipment groups when assets are replaced.

This process has been in place for several years and generally works well. However,
the key challenge is data quality. Efforts are being made on several fronts to try to
improve the situation. For example, new modules have serial numbers accessible online,
allowing feedback loops between the databases and the installed hardware to be created
(auto-discovery). An inventory of the stores should be performed periodically, the next
on-site inventory will be done during LS2. Also, improvements to the integration between
the different databases and tools, is being implemented under the Controls Hardware
Data Management initiative, as described in figure 7.2. Finally, we want to be able to
identify failure modes and ageing components, by defining failure types in EAM Light
and assigning them to defective modules.

Figure 7.2: Generic workflow for Controls Hardware Data Management

8. Operating Systems

All of our software, except for the C code developed with MockTurtle, runs on top of an
Operating System (OS). For the last 15 years, we have focused our efforts on a single
choice: Linux. Of course, there are different requirements between the different types of
hosts. The embedded Linux must have a reduced foot-print, the FECs’ Linux must have
better real-time characteristics than the standard kernel, and all of them must be very stable.
The following sub-chapters present the various Linux configurations that we have, as well
as some details on older OSs that are still in use and how we manage the OSs and their
deployment on hundreds of computers.

8.1 Servers and Consoles
For many years, the servers and consoles have run under Linux. Most of these computers
do not have real-time constraints and stability is the key aspect that should be maximised.
Servers and consoles run CERN Community Enterprise Operating System (CentOS),
which is a derivative of Red Hat Enterprise Linux (RHEL). From CentOS, CERN’s IT
department derives CERN CentOS, thus giving BE-CO the necessary upstream support. In
each rebuild, custom packages are added, for example, CERN CentOS contains packages
for user and printer management that are CERN-specific. As CentOS is based on Red Hat
Enterprise Linux, we are guaranteed a version of Linux that will remain stable for 8 to
10 years, including the backport of bug fixes and the addition of new drivers to support
modern hardware. In 2019, the version used in operation is CentOS 7 (64-bit) based
on RHEL 7. The previous version of Linux for the consoles and servers was based on
Scientific Linux (SL) developed at Fermilab. As shown in figure 8.1, both SL and CentOS
are derivatives of RHEL. In order to further increase the stability of the server environment
in the medium-term, we are investigating high-availability solutions that could be used
for our critical services. The mechanism is based on an active/passive system, more

8.1 Servers and Consoles 59

specifically, a two-node configuration with one active and one passive node, which could
be extended further. As open-source solutions are always preferred, pacemaker (a high-
availability Cluster Resource Manager (CRM)) and corosync (a Group Communication
System (GCS)) are used.

Figure 8.1: Extract of the Red Hat family tree focusing on RHEL

8.1.1 Configuration and Package Management
The Control System needs a number of specific packages in addition to the standard ones
offered by IT. Moreover, in order to successfully manage the configuration and deployment
of 600+ servers and consoles, we need to have our own repository and tools. We chose
Ansible, a piece of Free Open Source Software (FOSS) from Red Hat, to perform the
deployment and configuration management [10]. During the year, Ansible is used in
pull-mode, where a Cron job pulls a Git branch and locally performs the installation and
configuration. The Ansible push mode is used to perform checks, reboot hosts and perform
further checks to ensure that they have returned to a good state. Additionally, it is used for
general "orchestration" of hosts. For the process’ execution and management, we still use
a home-made tool called wreboot.

One of the key features of Ansible compared to other products such as Puppet, used by IT,
is that Ansible does not require a custom agent to run on the to-be-configured machines.
Instead, Ansible uses Secure Shell (SSH), which is available as standard on any Linux
machine.

Ansible allows us to categorise different computers into groups and sub-groups by func-
tionality (consoles, VirtualPCs, etc.) and assign roles to them. The roles define a set of
tasks to be performed such as installation of packages, configuration of the machines, etc.
Figure 8.2 illustrates the role hierarchy that we use for the development servers. For such a
machine, in addition to the base set of packages, we add specific packages for the server
environment and yet another set for the development servers.

60 Chapter 8. Operating Systems

Figure 8.2: Roles given to a development server

8.2 Front-End Computers

The software running on the Front-End Computers (FEC) has to have real-time behaviour
(see section 11.1 for more details on real-time software). In the early 90s, we chose
LynxOS, a Unix-like, POSIX-compliant, hard real-time OS. The main reasons behind
this choice were its support for multi-users and multi-processes, as well as its real-time
features. Even though we are still using LynxOS on a few PowerPC-based operational
FECs, we plan to replace them all with Linux-based systems by LS2.

In the early 2000s, as the availability of Linux distributions increased, it was decided to
use Linux on the FECs, as well as on the consoles, as this allows us to better homogenise
the OS landscape of the Control System. As the servers and consoles are based on CERN
CentOS 7 (CC7), it is logical to use the same distribution for the FECs. In 2019, we
support three versions of Linux for front-end computers.

On one hand, we have the SLC versions, a 32-bit SLC5 (L865), based on RHEL5, and a
64-bit SLC6 (L866), based on RHEL6. On the other hand, the next-generation of Linux for
the FECs, which is available since the end of 2017, is based on CentOS 7 (see section 8.1)
and is 64-bit with a real-time kernel. Unfortunately, when we started to use SLC5, there
were no readily available real-time kernel packages so we had to configure and compile our
own kernel to fit our needs. With SLC6, there is a Messaging Real-time and Grid (MRG)
repository where a real-time kernel package is available. This kernel provides low-latency
responses to events, something only required in our real-time applications, and is therefore
applied to the FECs but not typically to the servers and consoles.

As explained in chapter 5, the FECs are diskless machines and the OS must be downloaded
into a RAM disk at boot time. From the IT Dynamic Host Configuration Protocol (DHCP)
server and our boot servers, the booting FEC obtains all necessary information required to
download the OS image and proceed with its startup. This mechanism is based on PXE
Boot, a combination of DHCP and Trivial File Transfer Protocol (TFTP).

8.3 White Rabbit Switches 61

8.3 White Rabbit Switches
For the White Rabbit switches we need a simple and efficient embedded Linux image.
The White Rabbit switches have limited space both in terms of mass storage (512MB of
flash) and RAM (64MB). Therefore, we need to limit the number of tools installed in
order to minimise the footprint of our distribution. Thanks to the switch’s architecture,
the ARM CPU is limited only to administrative tasks and does not have any real-time
constraints. Hence, the kernel built for the switches does not need any specificities, such as
latency guarantees, unlike the front-ends. Unfortunately, due to maintenance complexity
and the high number of tools available by default, we cannot reuse neither the SLC nor
CentOS distributions. Instead, we decided to use a tool, BuildRoot, to generate our own
tailored-to-our-needs distribution. Figure 8.3 depicts the GUI that can be used to customise
our Linux distribution.

Figure 8.3: BuildRoot’s GUI to select the options of the WhiteRabbit switches’ OS

For the management of the switches (updates, etc.), we do not currently use any tools such
as Ansible. A manual procedure is followed twice a year, or more often if a patch must
be applied urgently. Even if the procedure is still manual, the updates can be performed
remotely. Currently, a simple configuration file stored on NFS is used but the ideal solution
would be to store the required information in the CCDB and generate the file automatically.

III

9 FPGA Gateware . 63
9.1 HDL Development Tools
9.2 Mock Turtle

10 Kernel Software . 67
10.1 Kernel Software Development Tools

11 FEC Applications . 72
11.1 Real Time Systems
11.2 FESA
11.3 Other Real-Time Frameworks
11.4 Generic FESA Classes

12 Low-Level Development 77
12.1 Cheby
12.2 SILECS

Front-End
Software

9. FPGA Gateware

Since the 90s, most of the electronic boards use an FPGA on the PCB to implement
the digital logic. The FPGA can be seen as a sea of logic gates and flip-flops that have
to be configured in order to produce a useful result. This configuration is achieved by
downloading a binary bit-stream into the FPGA. As with software, the development is not
done at a low-level but instead using Hardware Description Languages (HDLs). The two
main HDLs are VHDL and Verilog. Once the HDL code is written, the code is translated
into a configuration bit-stream in a two-stage operation (synthesis and place and route).
The HDL code is commonly referred to as gateware and the same engineering principles
apply to gateware as they do to software.

One of these principles is modularisation. Features such as memory access or external
bus access (e.g. VME bus controller) are implemented in separate modules to properly
structure the gateware and ensure good reusability. Those modules are referred to as HDL
cores. In some cases, the HDL cores are also known as IP cores, where the IP stands for
"Intellectual Property".

To interconnect the different cores, an internal bus is required. In 2012, it was decided to
use the Wishbone Bus, as it was the only free, open-source option available at this time.
From 2019 onwards, another bus, Advanced eXtensible Interface 4 (AXI4), will also be
supported. Figure 9.1 gives an overview of the FPGA architecture used to support the 100
MSa/s 4-channel FMC ADC when plugged into the SPEC carrier.

The main advantage of such an architecture is that it becomes relatively easy to exchange
blocks connected to the internal bus. For example, the PCIe core (top-right corner of
figure 9.1) can be replaced by a VME bus core.

64 Chapter 9. FPGA Gateware

Figure 9.1: Gateware architecture of the 100MSa/s 4-channel FMC ADC

In 2019, the BE-CO group provides, among other components, cores for:

• Bus controllers (VME, PCI, PCIe, etc.)
• Memory access
• Wishbone Bus interconnect
• White Rabbit/PTP core

Nevertheless, the HDL development remains a complex task that can be lengthy. Even
though simulation tools exist, the iteration time between versions is much longer than one
typically finds in software development. To alleviate this problem, the group provides
two tools, HDLMake and Wishbone Generator (wbgen) to facilitate and streamline the
development process. In addition, in order to broaden the range of profiles able to work
with FPGAs, the MockTurtle core has been developed.

9.1 HDL Development Tools
HDLMake facilitates the HDL development work by coordinating the many tools normally
required. The input to HDLMake is a set of design files, used to call the synthesiser, the
place and route, simulator, etc. In 2019, the tool supports the two main FPGA brands,
Xilinx and Intel (formerly Altera).

For the interconnection of the cores, another tool called wbgen is used. For example, in
order to connect two cores, the first step is to describe the registers that each HDL core
exposes, and which need to be connected to the internal bus. From this description, wbgen

9.2 Mock Turtle 65

generates the bus interfaces. The logic of the cores is implemented directly in HDL by the
developer, as well as the connections between the bus signals of the two cores. For cases
where more cores are involved, an additional Wishbone Bus crossbar core is required, but
the rest of the process remains the same.

In the future, HDLMake will probably be replaced by FuseSoC, an open-source, third-party
solution, and wbgen will be integrated directly into Cheby (see section 12.1).

9.2 Mock Turtle
MockTurtle is an FPGA core and software framework that facilitates development of
hard real-time applications [62]. The main goal of MockTurtle is to reduce development
time and allow C programmers to develop in the FPGA without knowledge of any HDL.
This is achieved by providing an HDL module implementing small CPUs, known as soft
processor cores or soft cores, that can be programmed in bare-metal C. Figure 9.2 depicts
MockTurtle’s architecture with its main external connections.

Figure 9.2: Mock Turtle’s architecture

MockTurtle is configurable and can support up to eight CPUs whenever computations have
to be performed in parallel. MockTurtle also provides a means to synchronise the different
CPUs (semaphores) and access shared variables. Initially, the CPU implemented was the
LM32, a 32-bit microprocessor design from Lattice Semiconductor. In the future, the
LM32 will be replaced by the CERN-designed micro Reduced Instruction Set Computer
(RISC) 5 (µRV), a simple CPU implementing the RISC V instruction set available with

66 Chapter 9. FPGA Gateware

a Lesser General Public Licence (LGPL). The C code written for the MockTurtle CPU
is simply compiled using the GNU’s Not Unix (GNU) C Compiler (GCC)10 toolchain
and GNU Debugger (GDB) support is foreseen. Whenever some logic would be better
implemented in hardware, it is easy to add logic blocks. To interface with the external
world (Ethernet, VMEbus, etc.) a uniform system of First In First Out (FIFO) is provided.
Of course, a UTC input port fed by White Rabbit is optionally available.

In 2019, the product is still under development but the plans are to bring it to a level so
that it can be offered as a BE-CO service. In the future, a possible evolution would be to
close the gap between a pure bare-metal C environment and a real-time framework such as
FESA (see section 11.2 for more details on FESA).

10recursive acronym GNU’s Not Unix (GNU)

10. Kernel Software

Whenever our application software needs to access a piece of hardware, it does so by
relying on the operating system’s kernel. The Linux kernel can be seen as a big monolithic
piece of code that gets compiled and linked in one go; all of the variables have to be
resolved at compile/link time. Nevertheless, the kernel accepts extensions through kernel
modules. Kernel drivers (aka device drivers or simply drivers) are the pieces of kernel code
that handle I/O operations and interrupt handling. Most of the time, the drivers are built as
kernel modules. The drivers expose their services to the applications through system calls
such as ioclt, read write, etc. Another alternative is to ask the kernel to map I/O addresses
in the process’s addressable memory and to handle the interrupts directly in the user-space
code. Unfortunately, this setup is very inefficient as it involves a lot of expensive context
switching between the user space and the kernel space. Another advantage of using a kernel
driver is that it allows for easier concurrency management as the locking can be done in a
single place; the kernel code. For those reasons, we systematically use drivers to access our
front-end computer’s hardware. As drivers expose limited operations to user-space (ioctl,
read, write, select. . .), the driver is typically accompanied by a user-space library that
provides a clean C API. In the rest of this chapter, and unless specified otherwise, whenever
we write driver we mean the kernel module and its user-space library. Figure 10.1 depicts
the different spaces in a Linux system as well as the location of the typical components.

The driver is the first opportunity to add a level of abstraction to the Control System. The
driver should provide an application-agnostic functional interface that hides the actual
implementation details of the hardware modules they control. The application software
(e.g. a FESA class) will then use that library’s API to implement specific applications
using the hardware modules. Modifications to the implementation details will not be seen
by the applications, as they are shielded by the driver. For some very common hardware
(e.g. a serial line such as an RS232 port), the interface has been standardised further and, in
the example of a serial line, one expects to see the hardware through a TTY type interface.

68 Chapter 10. Kernel Software

Figure 10.1: User and kernel spaces in Linux

The developer of a new board driver can rely on kernel services, and the resulting modules
require symbols from the kernel that are resolved during the module installation (insmod).
In turn, the installed module can export other services (i.e. symbols) that then can be
used by other modules. A good example of this structure is the VME driver that provides
an in-kernel API that can be used directly by the device drivers by relying on symbols
exported by the VME driver.

While the Application Binary Interface (ABI) is very stable, the in-kernel APIs are much
more subject to refactoring between versions of the kernel. This means that, whenever a
new kernel is supported by the group, an effort has to be made to adapt the drivers to the
new kernel. Modern kernels evolve less than they used to (e.g. from 2.6.14 to 3.6.11) but
this is an important point to keep in mind when planning the development of drivers.

For all of the module types in the BE-CO hardware kit, the group provides a driver with its
user-space library and test program. This set is available for all of the operating systems
currently supported by the group although it is possible that the newest modules are only
available for the newest OS’s. In addition, we provide raw VME bus access thanks to a
driver interfacing with the PCI-to-VME bridge; the Tundra TSI148 chip on the MEN A20.
Access to PCI/PCIe buses is already fulfilled by the Linux kernel and therefore we don’t
need to provide a custom driver. As explained in section 5.4.3, we try to systematically
open-source our hardware developments [15, 57]. In turn, we can share the device driver
giving access to the module. Instead of having a specific public repository and to have to
install the driver manually, one can upstream the driver and get it integrated into the kernel

10.1 Kernel Software Development Tools 69

directly. This is something that the BE-CO group has done a few times, but the additional
time required to properly upstream a device driver means that we can only afford to do it
for very generic drivers or modules. Furthermore, while this makes perfect sense from a
Linux community contribution point-of-view, since we use very stable versions of Linux,
there is a long delay between our contribution being included in the kernel and being able
to profit from it. A typical case for a device driver that we might want to upstream is the
driver we will write for the new MEN A25’s VME bridge, which is based on an FPGA and
an open-source HDL design.

When it comes to system configuration, we want to automatically install the drivers when
a FEC starts, depending on the hardware modules present in the enclosure. The Controls
Configuration Database (CCDB - see chapter 20 for more details) is used to store drivers’
configuration and the modules installed in a given FEC. When the FEC is prepared (aka
generated), the transfer.ref file is generated and the driver installation commands with all of
the parameters are included. Because the VME configuration requires a lot of parameters
to be given, we do not currently use Linux standard mechanisms. In the future, the release
location of the drivers and the way we install them should be reviewed aiming towards a
more Linux-standard approach.

10.1 Kernel Software Development Tools

Developing kernel code is very difficult, as almost any bug introduced by a driver will
stop the computer and require a complete reset. For that reason, BE-CO provides two
tools, Encore and Encore Driver GEnerator (EDGE), to generate device drivers and their
user-space libraries from descriptions.

10.1.1 Encore

Encore generation is based on a VME module description (addresses, access mode, memory
size, etc.) from the Controls Configuration Database (CCDB). In addition to the device
driver and its user-space library, Encore also produces a Python-based test program. This
can be used to create small Python expert applications to test the hardware. With a tool
such as Encore, the user does not provide any kernel code and the stability of the system is
ensured by having only well tested code in the kernel space. Even the interrupt handling is
done in the user space but some fine tuning of the interrupt handling kernel code is still
possible, for example, change the interrupt queue size. Figure 10.2 is a screen-shot of the
Encore’s register definition page.

Unfortunately, the API that the library exposes is a simple mapping of the different registers
(either a narrow or a wide interface). By relying on such a tool, we miss an opportunity
to increase the level of abstraction and the driver is just there to handle the transition
between the access-limited user space and the kernel. The consequences are that the logic
that should be in the driver is now in the application (e.g. a FESA class) making it more
complex than necessary and vulnerable to hardware implementation details changes. Also,
the overall performance is impacted as a context switch between user space and kernel has
to be done for each and every register operation.

70 Chapter 10. Kernel Software

Figure 10.2: Register definition in Encore

10.1.2 EDGE
Building on the functionality provided by Encore, EDGE adds PCI support, versioning,
simulation, and a better hardware description format. VME was for many years the format
of choice for the design of electronic boards, but with more and more designs using the
PCI and PCIe buses, a tool to generate device drivers for those buses was required. One
of the challenges of supporting PCI is the heterogeneity of the bridge implementations.
Indeed, EDGE provides read/write PCI access but generic support of the interrupt handling
and the DMA transfer is not possible, as it was with VME. Nevertheless, EDGE brings
a unified treatment of the DMA and interrupt handling, thanks to its plug-in architecture.
EDGE currently supports the Gennum 4124 and the Xilinx PCI Express DMA IP core
bridges. Support for more bridge implementations will be added when the need arises.

The development of EDGE was also an opportunity to improve the user-space library’s API
and provide a long-awaited feature: hardware simulation. In 2019, the latter is still quite
basic, but based on the text file, it is now possible to simulate the response of the hardware
module. EDGE provides two APIs, the first is generic, while the second is specific, based
on the hardware description. Similarly to Encore, EDGE also generates a test program, as
described in section 19.2.1.

The workflow of EDGE, as shown in figure 10.3, does not differ substantially from Encore’s
process.

10.1 Kernel Software Development Tools 71

Figure 10.3: EDGE’s workflow

11. FEC Applications

The front-end computer (FEC) applications have two main roles. Firstly, they perform
the low-level control of the hardware, and secondly, they expose the low-level variables
to the external world, for the high-level Control System to access. In the accelerators’
Control System, we choose to expose these variables using a paradigm known as the device-
property model. The part of the FEC applications that implements the device-property is
commonly referred to as the device server.

As explained in the previous chapter, the accelerator equipment’s reference values (aka
settings) change continuously depending on the beam being produced. The vast majority of
the hardware modules used in the Control System are not aware of this setting multiplexing
and are controlled by a single set of settings at a given time, without having any knowledge
of the accelerator’s timing. Therefore, the FEC applications need to perform the control
of the hardware following the events and instructions (user, destination, etc.) distributed
by the timing system. In addition, as the operators need to monitor the beam production
and the state of the accelerators continuously, the FEC software sends a constant flow of
hardware acquisitions to the high-level Control System. A piece of software that reacts to
events and processes them before a deadline is commonly referred to as real-time software.
Parts of the FEC applications are designed to fulfil these real-time constraints. They are
known as real-time systems.

11.1 Real Time Systems
When we talk about a real-time system, we must qualify the hardness of the real-time
requirements. We should also ensure the real-time hardness of the solution and how it
matches the requirements. There are three adjectives commonly used when describing
a real-time system; hard, firm and soft. When talking about real-time requirements, the
adjective depends on the consequences of missing a deadline and the usefulness of the

11.2 FESA 73

result when it occurs after the deadline. In a hard real-time system, missing the deadline
is a total system failure, while in a firm real-time system this situation is tolerable but
degrades the quality of service. In both cases, the usefulness of the result drops to 0 as soon
as the deadline is missed. In a soft real-time system, the usefulness of the result decreases
after the deadline (100% at the deadline) until it reaches zero. Figure 11.1 depicts the
usefulness of the result before and after the deadline for hard/firm (left) and soft (right)
real-time systems. Similarly, a real-time solution offers deadline guarantees that can be
hard or soft.

Figure 11.1: Degradation of the processing’s usefulness in hard/firm and soft real-time
systems

When qualifying the real-time FEC applications and the CERN accelerators they control,
we have either hard or firm requirements depending on the piece of equipment at hand. For
example, if we look at the constraints put on the control of a power converter feeding a
bending magnet, it is clear that the usefulness of controlling the current falls to zero after
the deadline; setting the right current in the magnet after the beam has passed is useless.
The consequences depend very much on the element and where it is in the accelerator
chain. A bending magnet in the transfer line between the AD machine and one of its
experiments will only degrade the quality of service i.e. the amount of beam provided to
the experiment’s physicists, whilst the same type of element in the LHC might actually
destroy the accelerator and should be considered as a hard real-time constraint. Some of
the high-level applications have soft real-time constraints.

FEC applications must be designed and implemented with real-time constraints as well
as respecting the structure and behaviour of the device-property model, which is not
necessarily straightforward. In order to ensure better integration with the higher layers, the
BE-CO group provides a real-time framework that allows equipment experts to design and
implement their real-time applications, including the device server part. This allows the
optimisation of the resources required for such a development. The latest version of this
framework is called FESA3 (Front-End Software Architecture).

11.2 FESA
FESA, Front-End Software Architecture, is the real-time application framework to be
used for any real-time application and device server developments in the accelerator
Control System [5]. In 2019, the latest version of FESA is FESA3 V7.2.0. FESA offers
developers a set of features to solve common problems in a common way, bringing a
CERN-wide approach to the low-level software development. The main aspects covered
by the framework are:

74 Chapter 11. FEC Applications

• Device server modelling (device-property model)
• Automatically generated get and set methods for properties
• Data-consistency checks for incoming and outgoing values (property get/set)
• Internal data support (device fields)

– Initialisation, persistence and restoration
– Data-consistency in multi-threaded, multi-core environment [32]

• Real-time behaviour modelling
• Real-time event dispatching with low jitter
• Configuration-driven real-time activity threading
• Support for alarms and run-time metrics
• Source code versioning, release and deployment

By developing an application with the FESA framework (called a FESA class), developers
not only benefit from ready-made solutions to many of their problems, but they are also
guided through the process. Furthermore, the resulting piece of software has a common
structure, making long-term support and maintenance easier. The FESA development
environment is based on an Eclipse plug-in, shown in figure 11.2, which allows the user to
perform all the steps (modelling, coding, compilation, test, release) in a single Integrated
Development Environment (IDE).

Figure 11.2: Design view in the FESA Eclipse plug-in

The user code is kept to a minimum and there are only three entry points where custom
code can be injected. The first point is the so-called specificInit methods that are called
to initialise the system (software and hardware). The two other points are the server
actions and real-time actions. Server actions are classes that can be implemented by the
developer when specific code needs to be executed on a get or set call. Developers can
also choose to use the default implementation provided by the framework, which performs
basic boundary checks and read-write from/to internal device fields. Real-time actions
are C++ classes triggered by real-time events and executed in a threading environment,
depending on the FESA class design. The code path between the event reception and the
action execution is guaranteed to be deterministic, lock-free, and wait-free. Care is taken

11.3 Other Real-Time Frameworks 75

to avoid jitter-generating constructs such as dynamic-memory allocations. The real-time
actions are the typical location for placing the code that manipulates the hardware. Both
action types have a limited, easy-to-use environment with direct access to the operation
context (selector, event) and the devices implicated in the operation; a single device for a
server action, or a device collection for a real-time action.

The basic workflow for the development of a FESA class is as follows. First, one has
to describe the properties and their value-items (name, type, dimensions, etc.), declare
custom types such as enumerations, and define an internal device data model (fields). For
the real-time part, one declares the events that the software must react to (timer, timing,
custom events) and how those events must be handled (how many threads, how to distribute
the devices on the threads, etc.). Finally, one declares how the updates must be propagated
to inform the high-level Control System of the new values. Once the modelling is done,
the C++ code can be generated. In most of the cases, only the real-time actions remain to
be implemented, as this is where the hardware is controlled and this requires equipment-
specific code. With the actions implemented, the developers can compile and test their
software. If the software has to be deployed on operational FECs, it must first be released,
following a strict version control.

Most of the steps described above can be done in an isolated environment, making FESA
suitable for off-line development or even development outside CERN [43, 58]. Neverthe-
less, the FESA class description is sent to the CCDB at release time, in order to make the
class interface (properties and custom types) available to the high-level Control System.

11.3 Other Real-Time Frameworks
There are other frameworks than FESA3 and while most of them are obsolete with well-
defined end-of-life dates, one, called FGCd, is fully supported and used by the TE-EPC
group for the control of the Function Generator Controller (FGC)-based power converters
[35]. For the sake of completeness, we mention the names of the previous frameworks:
FESA2, General Module (GM) and SLEquip, the latter being actually a device server
framework rather than a real-time application framework.

11.4 Generic FESA Classes
As CO provides the hardware kit to cover generic hardware functions, the group also
supplies the drivers, the low-level test program and the FESA classes. This allows the
modules to be integrated into the Control System and used "out of the box", without
requiring further development. With these building blocks, users can develop a controls
solution to a problem quickly and with little investment.

The generic FESA classes are grouped in a family called Controls Generic Front End
Software (CGFES). Their core functions are:

• Timing, such as fine delay (CGTFDEL) and time-to-digital converters (CGTDC)
• Function generation for arbitrary (CGAFG) and periodic (CGPFG) functions
• Basic digital (CGDIO) and analogue I/O (CGAI, CGAO)

76 Chapter 11. FEC Applications

To reduce the maintenance effort, the CGFES FESA classes all rely on the CO Hardware
Abstraction Library (COHAL). This abstraction layer allows us to integrate new generations
of modules with equivalent functionality into the FESA class. In order to reduce the support
cost of declaring new instances of CGFES, we plan to develop a better instantiation tool
that would allow the users to be more independent.

12. Low-Level Development

In part III, the chapters describe the different layers of software that BE-CO provide to
the equipment groups so that they can build their specific low-level applications. These
applications, deployed on top of controls hardware as described in chapter 5, perform the
control and acquisition of the accelerator equipment.

To recap, a typical low-level controls application is comprised of an electronics board,
which has an FPGA for which some gateware will be required (see chapter 9). In order to
interface the board with the RT application (see chapter 11), a kernel driver is needed (see
chapter 10). It must be noted that sometimes, the electronics board is installed remotely.
In this case, different hardware solutions such as remote I/O and fieldbuses can be used, as
described in sections 1.5 and 5.5, combined with a software component such as Software
Infrastructure for Low-Level Equipment ControllerS (SILECS) to interface with the RT
application (see section 12.2).

Requiring several components to build a specific controls application can be cumbersome
as every iteration requires the developer to go through all of the layers. In order to ensure
a rapid and efficient development process, the development tools need to be properly
integrated. The next chapter describes Cheby, which aims to orchestrate the different tools
described above.

12.1 Cheby
Cheby was developed to ease the development of hardware-software interfaces, thus
avoiding repetitive and tedious work. One of the main goals is to have a single source for
the description of the interface, which allows the generation of several artefacts such as
HDL, drivers, etc. Cheby is an integration tool in the sense that it provides the common
description, but it relies on other specialised tools to generate code. Figure 12.1 depicts

78 Chapter 12. Low-Level Development

the integration of Cheby with other front-end software tools to generate HDL, drivers, and
FESA class designs.

Figure 12.1: Integration of Cheby with other front-end software tools

The hardware-software interface, also known as a memory map, is described as a YAML
text file. The main concepts applied in the file are registers with bit-fields and RAM.
In order to structure the interface description, registers and RAM are logically grouped
into blocks. Furthermore, interface descriptions can be included in other descriptions as
sub-memory maps, in order to allow the reuse of existing mappings. For example, the
description of a commonly-used HDL core can be directly included in the description of
an electronic board.

Given an interface description, Cheby delegates the generation of the wishbone hardware
interface to the wbgen tool (see section 9.1). It relies on Encore or EDGE to generate the
driver and the user library and finally calls Cheburashka to generate a basic FESA class
design. Optionally, Cheby can generate a simple C structure representing the software
interface for cases where the device driver is developed manually.

It should be noted that by relying on tools such as Cheby for the development of low-level
controls, many abstraction layers are bypassed. Ideally, once the final design is obtained,
some effort is required to abstract low-level details in the appropriate layer. For example,
the device driver should hide the hardware implementation details from the RT layer
and the RT software, FESA in most cases, should expose an API with a higher level of
abstraction to the upper layers of the Control System, instead of registers and bit-fields.

The first production-ready version of Cheby was released in late 2018. The tool is only
available with a command-line interface, which might be seen as a drawback to some users,
but offers scripting capabilities. In the future, more options will be available, such as the
choice between Wishbone Bus and AXI4 for the hardware interface. Further integration in
the Control System is also foreseen, by storing the Cheby descriptions in the CCDB.

12.2 SILECS 79

12.2 SILECS
As commercial Supervisory Control and Data Acquisition (SCADA) solutions such as
PVSS and WinCC OA are not well-integrated in the BE-CO Control System, we needed a
layer to ease the communication with the industrial components. Software Infrastructure
for Low-Level Equipment ControllerS (SILECS) is a tool to streamline the data exchange
between clients (e.g. FESA classes) and low-level controllers that are typically unable to
integrate with the FEC-based Control System. Originally, SILECS, then called Ethernet
Interconnection for Programmable Logic Controllers (IEPLC) [41], was used only for
PLCs, as they are neither powerful nor open enough to run Linux and FESA. Nowadays,
the number of controllers SILECS can support has grown and, in addition to industrial
solutions from Siemens, Schneider, and Beckoff, SILECS can also communicate with
mini-PCs, LabVIEW PXIe crates and even FPGAs.

In addition to hiding the different communication protocols such as Siemens’s S7, Modbus,
or LabVIEW shared variables, the SILECS layer defines a data model based on data
categories, configuration, command, and acquisition. Influenced by the device-property
model, this approach of data block exchange also offers better performance. This common
model has the advantage that it is only at deployment time that the target controller must
be specified. Furthermore, this approach makes it much easier to look at others’ designs as
the structure is common.

The approach taken by SILECS is very similar to the one used in FESA. Based on the
user design, code is generated in order to reduce or even eliminate the need to write code.
Depending on the target object, SILECS generates either code or a data mapping to be
uploaded to the low-level controller and a configuration file to customise the generic client
library.

The user design is produced using a stand-alone GUI based on the Eclipse Rich Client
Platform (RCP). This has the advantage of not requiring an operational Eclipse installation,
whilst retaining the possibility to use the Extensible Markup Language (XML) validation,
Apache Subversion (SVN) integration, etc. provided by Eclipse. This is convenient, as in
this case, there is no C++ coding/compilation required. A possible future evolution is to
provide an Eclipse plug-in contribution that could be integrated with the FESA plug-in.

The first step of the SILECS workflow is to define the data elements being exchanged with
the controller. The design is stored in an XML file and must be validated against an XML
schema defining the SILECS meta-model. In the second step, the tool is used to generate
both the controller specific code (C code, mapping, LabVIEW configuration) and the XML
configuration file that the client library reads to perform the read-write access. Several
points are worth noting with this design. It is as un-intrusive as possible, as on most of the
targets, there is no server or anything else to be run. There is a clear separation between
the data structure design step and the rest of the process which makes the necessary skill
set smaller, as the user does not need to be knowledgeable in both PLC and FESA. The
client library, which can be used from any C++ application, is very generic. An additional
step allows the generation of a design-specific wrapper library in order to further ease the
copying between the low-level controller and a FESA device (direct read/write from/to the
FESA device’s fields). Figure 12.2 summarises the SILECS workflow.

80 Chapter 12. Low-Level Development

Figure 12.2: SILECS workflow

As visible on the figure, there is a generic diagnostic tool that can be used to validate and
diagnose a system. This tool has been developed using C++ and Qt and uses the very same
client library as the final client application.

With the arrival of more and more Ethernet-based solutions, one could ask what is the
rationale to use SILECS rather than directly run a FESA class on Linux. The FEC
infrastructure is based on either SLC or CentOS CERN and, in 2019, FESA is only
available for the Intel CPUs. Many controllers will not have enough memory or CPU
power to run the full stack properly and many of those are based on ARM CPUs that are
currently (2019) not supported. In addition, some of the smaller controllers (so-called
Ethernet couplers) do not have any programmable logic; they only give access to their I/Os.
Going a step further, prototypes have been made to exchange data blocks between FECs
and FPGA directly without a host on the FPGA side. This is based on the Wishbone Bus
architecture in the FPGA and Etherbone that connects the internal Wishbone Bus to the
Ethernet.

IV

13 Networking . 82
13.1 Ethernet Networks
13.2 RBAC

14 Middleware . 85
14.1 CMW-RDA
14.2 JMS
14.3 JAPC

Communications

13. Networking

13.1 Ethernet Networks
The networks for the controls components are based on Ethernet. As one can expect in such
a large organisation, there are several Ethernet networks at CERN, but as far as the Control
System is concerned, we only have to work with two networks; the General Purpose
Network (GPN) and the Technical Network (TN). The GPN is dedicated to public hosts
with Internet access while the TN is reserved for equipment used to operate the accelerators
and the technical infrastructure. A detailed description of the GPN is outside the scope
of this document and it is sufficient to know that most of the development laboratories’
equipment is installed on the GPN.

The TN has a backbone with a star topology but, for reliability reasons, there are some
interconnections between the leaf nodes. Each leaf also acts as a local star point i.e. at the
level of the technical building. For example, the CCR is a star point to which all of our
servers are connected. In 2019, the backbone is based on a 10GB Ethernet infrastructure.
The TN does not have any direct Internet connectivity. Nevertheless, some controlled
communication is possible between the two networks for both interactive sessions and
services [29].

The front-end computers, introduced in chapter 5, are connected to the network using either
one or two sockets. For the hosts supporting Intel’s AMT, a single connection is sufficient
for both the normal traffic and the host diagnostics. In short, AMT uses the same physical
link as the computer, but a separate chip intercepts the traffic and responds to specific
commands. This architecture allows AMT to work even if the main computer is OFF as
long as the chassis is powered. Typical AMT-enabled hosts are the industrial PCs based on
PCI or PCIe, but also the more recent PXIe CPUs. For the open enclosures such as VME,
the standard setup requires two connections, one for the normal traffic on the SBC, and

13.2 RBAC 83

a second one to the enclosure’s fan tray. This allows the monitoring, through SNMP, of
several important metrics (e.g. temperatures, fan speed, etc.) and also the capability to
perform actions directly on the crate, such as switching the system ON and OFF.

For the backend servers (see section 6.1 for more details), the network connections either
use the specific switches included in the HP ProLiant enclosures (2019), or external
switches provided in IT racks. For the HP solution, a network switch is located in each
enclosure and the connection is shared between all of the servers within. This approach
is very practical for installation and maintenance, but one has to keep in mind that the
bandwidth is then shared. For the next generation of servers, the quad enclosures follow
a slightly different model, with the switches installed directly in a central rack dedicated
to network equipment. There are two connections; The first connection provides TN
connectivity and the second is used for the Intelligent Platform Management Interface
(IPMI) link. IPMI is another management and monitoring solution for computer systems.
IPMI is more complex than AMT and the main physical difference is that it uses out-of-
band management as opposed to AMT that applies in-band management i.e. using the
same physical link.

Over time, the number of connected devices will continue to grow and therefore the network
capabilities must increase in line with this expansion. Recently, powerful application-
specific computers, such as the ObsBox (Observation Box) from the BE-RF group, needed
to be connected and required dedicated fibres.

13.2 RBAC
Role-Based Access Control (RBAC) is a component to protect access to certain resources
in the Control System. RBAC’s main purpose is to protect properties of selected devices.
It must be stressed that Role-Based Access Control (RBAC) is by no means designed to
protect against malicious users, but to prevent someone from performing the wrong action
at the wrong time which, during LHC operation, could cause the loss of the beam.

RBAC grants access to resources using roles and rules. A rule stipulates that a resource is
only accessible, in a combination of read, write, and monitor (get, set, and subscribe), to
users holding a specific role. A user can be allocated several roles and can select which
role they are performing at a given point in time. Once again, the whole mechanism
relies on the device-property model to structure its configuration; the rules are organised
by device class and class properties. As the device-property model is flexible enough to
allow modelling of more than the low-level devices classes (e.g. a FESA class), we can
use RBAC to protect any element that can be expressed in terms of class and property.
Nevertheless, one has to acknowledge that modelling everything as a class with properties
is not always elegant.

RBAC is made of two parts; the client and the server-side. The client-side deals with the
authentication of the users and the role selection. Figure 13.1 depicts the login dialog
and the RBAC role picker. The server side is in charge of the authorisation, based on the
pre-defined rules and the user token provided by the client. As for many elements of the
Control System, RBAC relies heavily on the Controls Configuration Database (CCDB) to
store roles and rules. As the low-level FECs do not have access to the Database (DB), we

84 Chapter 13. Networking

extract the rules from the DB into a file, the so-called access map that is read directly by
the server-side running on the FECs. RBAC is tightly integrated with Controls Middleware
(CMW)-Remote Device Access (RDA) (see section 14.1) and therefore token transport
and access control is transparent for the end-users.

Figure 13.1: RBAC login dialog and role picker

Originally, RBAC was designed to protect properties of selected devices and is primarily
used in frameworks such as FESA and FGC. With time, its scope and usage have grown,
and today RBAC also protects high-level services’ methods and GUI features. In other
words, some Java methods, accessible with RMI, are RBAC-protected to ensure that only
users with a given role can call them. This is achieved using Spring interceptor and method
annotations. As middle-tier servers have direct access to the DB, the access map is not
required, making the implementation lighter. Furthermore, the latest configuration is
immediately available. Recently, we started using RBAC to customise GUIs and tailor the
available functionality to the user role. In this case, rather than protecting resources, we
aim to improve the user experience by hiding unnecessary details and avoid cluttered user
interfaces.

The RBAC services must run with an extremely high availability. Therefore, all software
runs on two redundant servers and the clients connect randomly to either one. Whenever,
one server is unavailable, the clients automatically fall back to the other. While this simple
approach to load-balancing works, it’s not very flexible and, as for many other services,
we will investigate better solutions.

14. Middleware

14.1 CMW-RDA
The Controls Middleware(CMW) is our main communication infrastructure and, in par-
ticular the Remote Device Access, CMW-RDA or simply RDA, is the main component
used to exchange data between the front-end computers and the high-level controls layers.
Other components of the CMW communication infrastructure are the RBAC service, the
naming service and several gateways offering protocol conversions, among other things.

The core business of CMW-RDA is to provide a peer-to-peer communication to organise
data flow between the distributed components of the Control System. CMW-RDA is
the lowest level component that provides the first elements of the device-property model
(see chapter 3 for details) and where concepts such as device are exposed to the users.
Aside from this, CMW-RDA is purposely completely agnostic of the other CERN-specific
concepts such as timing, multiplexing, etc. (see chapter 4). Three operations are supported
by CMW-RDA. The first two are the typical command-response operations read and write,
which in our environment are called get and set. The third operation comes from the
publish/subscribe paradigm and is called subscribe (or monitor). In the case of subscribe,
the client indicates its interest to receive updates for a given device-property pair, aka
an access point. Once the server has new data, it pushes it to the client (aka update). In
addition to the access point, the client can specify a selector (see section 4.3 for details
on selectors) for each of the three operations. The selector is mandatory for getting and
setting when the device and the property are multiplexed, in order to allow the low-level
software to perform the data de-multiplexing. In the case of subscription, the selector
is used to filter out some updates when the data’s context does not match the selector
e.g. data from a different cycle or with a different beam destination. All operation types
support synchronous and asynchronous modes. The latter is particularly useful when a
large number of access points must be read or written.

86 Chapter 14. Middleware

CMW-RDA hides the complexity and details of the data exchange between the clients and
the device servers. Many typical communication issues are handled by RDA, such as loss
of connection, overflows, etc. In addition, a user does not need to know the location of a
server (URL) or even which server a given device is on. RDA relies on the CMW directory
service to perform the name resolution i.e. from device name to server name and address
(URL). The CMW directory service, which is backed up by a database, does more than
the simple device-to-server-URL resolution. Indeed, hints can be provided with the query
to permit special routing of the clients. Instead of a direct client-server connection, the
directory service can route the client to an intermediate node that provides either high-level
services or act as a fan-out, shielding the server from the load from multiple clients. The
additional services range from a protocol conversion to a complete middle-tier system,
providing business logic. Figure 14.1 depicts the typical data exchange that occurs when a
user performs a get followed by a set on an access point.

Diving deeper into CMW-RDA’s implementation, all low-level networking is encompassed
in a layer based on zeroMQ. ZeroMQ is a high-performance asynchronous messaging
library on top of TCP/IP. In addition to the support of asynchronous communication
between peers, zeroMQ offers great features such as queuing, batching, recovery of
connections, and a mostly zero-copy implementation. Its integration in CMW-RDA was
eased thanks to the BSD-like API, which will be familiar to anyone knowing the low-level
socket API. ZeroMQ is open source with a well-established community and bindings to
many languages. It is licensed with LGPL v3 but the authors want to move to Mozilla
Public Licence (MPL) v2 to have more freedom. We decided to use zeroMQ for the
third version of CMW-RDA following the conclusions of a survey we performed in 2011.
ZeroMQ was the most suitable modern lightweight library for networking at the time.

The availability of the CMW-RDA infrastructure is critical as every device access needs it.
In order to provide the required service level, the CMW directory service is deployed on
two separate computers with client-side load-balancing.

In the previous version (CMW-RDA2), we had an implementation based on the Common
Object Request Broker Architecture (CORBA). The main issue with CORBA is that
it does not provide asynchronous communication and that caused recurring problems
when the receivers (the clients) were too slow to follow the data throughput of the server.
Furthermore, CORBA’s footprint was bigger, and its implementation was not as efficient
e.g. no zero-copy implementation. The end-of-life of the CMW-RDA2 infrastructure is
planned for LS2, between 2019 and 2020.

14.1.1 Gateways, Proxies and the Passerelle
CMW proxies were put in place as a way to shield the servers from the varying number
of clients. This was necessary at the time, as the FEC’s CPUs were not as powerful as
they are today, and also due to limitations from the CORBA implementation. With RDA3,
proxies are not required, but we still use them during the transition phase in order to allow
connection of RDA2 clients to RDA3 servers.

As the LHC experiments use a different middleware, called Data Interchange Protocol
(DIP), we also provide gateways to translate RDA data to/from DIP data. This component
is a critical link between the LHC Control System and the LHC experiments.

14.2 JMS 87

Figure 14.1: Data exchange during CMW-RDA get/set

Finally, we also provide a .NET plug-in to allow clients running on MS Windows to use
CMW-RDA directly. This library, called the Passerelle, lets operators and accelerator
experts acquire data directly from tools such as MS Excel and Mathematica. However,
as the need for such a component is gradually disappearing, the plan is to phase out the
Passerelle.

14.2 JMS
In the early 00s, as RDA2 had some limitations, mainly with its scalability, we needed a
middleware solution which scales better. We started using Java Messaging Service (JMS)
as a way to serve data from Java services, something that was not easily possible with
RDA2 as the server-side implementation was incomplete.

As indicated in its name, JMS focuses on Java-to-Java communications, but it is not a
Java-exclusive solution, as bindings for many languages are available. In addition, JMS has
an architecture that tackles the scalability issue natively (one producer, many consumers)
and offers guaranteed delivery. With JMS, the server sends the data (a message) to a broker
and the broker forwards it as many times as needed to the clients. Data is posted to either
queues or topics, and clients subscribe, using the same queues and/or topics. We mainly

88 Chapter 14. Middleware

rely on topics, as a topic distributes the messages to each and every client, while the queue
sends one message to just one client before removing it from the queue. For many years,
JMS has been the standard BE-CO approach whenever communication between two Java
servers, or a Java server and Java GUIs, was necessary. As JMS is geared towards the
publish-subscribe paradigm, the typical setup was RMI for command-response and JMS
for data publication from the server. Looking back at the examples given chapter 2, the
data flows from the low-level (FECs) are post-processed by middle-tier servers before
finally being sent onwards to be displayed in a GUI. Most of the time, the amount of data is
greater after the post-processing, as the data is either augmented with information available
to the middle-tier servers (e.g. from databases) or the representation is at a higher-level
of abstraction, more suitable for GUIs and high-level applications (e.g. no encoding of
several pieces of info into a single integer).

The main issue with the client-server architecture used by CMW-RDA is that it does not
scale horizontally. It relies on the fact that the publishing point (i.e. the FEC in most
of the case) has enough resources to send the data as many times as there are clients.
If the number of clients varies a lot, this can create a load problem that is not trivial to
solve. Estimating whether a given system will be able to fulfil its real-time constraints
and cope with the client load is extremely difficult if the number of clients, hence the
amount of data to send, can vary by an order of magnitude. The JMS solution brings the
intermediate broker or brokers into the equation and the broker(s) handle the additional
load. Figure 14.2 depicts the current JMS infrastructure.

Of course, being shielded from the client load variation has a cost and, in this case, JMS
introduces an additional delay in the communication. Most of the time, this is not a
problem but, for systems such as OASIS (see chapter 23 for details) where the control
room operators examine several sources of information at the same time, it is important
to keep the updates’ time difference within a quarter of second, and this is not always
possible with JMS.

Figure 14.2: JMS infrastructure and its main users

Also, while it is very convenient to have a strong decoupling between the client and the
server, one has to be aware of the advantages and drawbacks. Its flexibility means that

14.3 JAPC 89

you can easily start a client before the server is even deployed and it is very easy to add
JMS topics for clients to listen to. Compared to CMW-RDA, where everything is tightly
integrated and every device must be declared in the DB, JMS is more flexible and can be
more suitable for some applications. On the other hand, if your client does not receive
data, it may be because the topic name is misspelt despite being successfully connected
to a topic. Development and diagnostics can be harder as the client and server parts are
further decoupled. Nevertheless, we can run the broker embedded in the server process
during the development and test phases and Java Management Extensions (JMX) metrics,
published by a web server, help to alleviate the problems.

A side effect of the JMS horizontal scalability, with data being sent from broker to broker,
is that it allows us to have a clean solution for forwarding data from the Technical Network
(TN) to the General Purpose Network (GPN). The solution consists of having only one
broker (JMS-PUBLIC) with GPN connectivity. The other brokers on the TN are not
accessible from the GPN broker and forward the required data to JMS-PUBLIC. In this
way, the TN services remains isolated from the connection with the GPN.

The first brokers were introduced in the early 00s and the first JMS deployments were
based on SonicMQ. Later, we moved to Free Open Source Software and used the Apache
software foundation’s ActiveMQ. This broker offers all the features we need and more
besides, such as SSL, multiple endpoints, and policies. The latter is a feature not available
in RDA that allows better control of the messages’ characteristics such as their size and
rate, as well as how many clients, etc. ActiveMQ also supports many protocols; Openwire
and Stomp being those used at CERN.

In 2019, we have approximately 25 JMS brokers with a broad range of usage with as
many as 1000s of messages per second and up to 2TByte per day. In the majority of cases,
we have one broker per service (e.g. one broker for the PS Booster InCA server, one for
the LEIR server, etc.). While redundancy and clustering would be possible, this kind of
setup is more complex and introduces more delay. With the stability of the brokers being
excellent, there is no reason to implement this unless a specific application requires it,
such as the LHC Beam Loss Monitor (BLM) concentrator or the LHC Software Interlock
System (SIS).

Nowadays, alternative solutions exist and a study is under way to evaluate whether we can
replace JMS by RDA3. In this case, we are aware that we will lose the advantages brought
by the broker-based architecture, but it would allow us to rationalise the technologies used
in Controls stack.

14.3 JAPC
The Java API for Parameter Control (Java API for Parameter Control (JAPC)) is an in-
house, client-side Java library that was developed around 2003. The primary purpose of
JAPC is to offer an abstraction layer on top of the different middleware (see sections 14.1
and 14.2). The two main JAPC extensions are for CMW-RDA (japc-ext-rda) and JMS
(japc-ext-remote). Nevertheless, it is possible to wrap any libraries exposing an API with
get and set methods and call-backs, into a JAPC extension, as depicted in figure 14.3. This
concept has been successfully used to wrap the complex API of the timing library (TGM).

90 Chapter 14. Middleware

Thanks to this extension, the end-user has only to learn the JAPC API.

Figure 14.3: JAPC’s main extensions

JAPC is not a device-property API but instead it is designed around the concept of a
parameter. Typically, a JAPC parameter is made by pairing a CMW device with a property.
For example, for the device MY.DEVICE and its property Prop1, the corresponding
JAPC parameter name would be MY.DEVICE/Prop1. Performing a get operation on
this parameter returns an object implementing the ParameterValue interface, which gives
access to the different value-items contained in the property (see chapter 3 for details on the
device-property model). It is worth noting that, unfortunately, the property’s value-items
are referred to as fields in JAPC and in the higher layers of the Control System. As often
the whole property is not needed, JAPC offers the possibility to create parameters for a
value-item (field) directly. To come back to our example, to read the value-item value1, the
full parameter name would be MY.DEVICE/Prop1#value1. One has to realise that, when
the underlying middleware is CMW-RDA, retrieving a single field in the property will not
save any network bandwidth as the whole property is always returned; in CMW-RDA,
the only access point is at the level of the device-property pair. Furthermore, one must be
aware that, when setting new values, the complete property might have to be set, which
is recommended in order to maintain the atomicity of the property. Obviously, if the
underlying device is multiplexed, accessing it will require a cycle selector. In order to
support multiplexing, JAPC provides a selector class to specify the context in which an
operation must be executed. Figure 14.4 depicts the main JAPC interfaces with their
relationships.

JAPC also extends the features offered by the middleware. Thanks to the ability to add
descriptors to the parameters, JAPC supports value types at a higher level of abstraction.
For example, if a FESA class describes an enumeration, this description can be provided
to JAPC through a descriptor. This allows the client to work with the enumeration and not
only the integer that is transported by CMW-RDA.

JAPC is also not limited to the basic types that CMW-RDA supports and can transport
serialised Java objects. This feature is very useful when a Java server exposes a JAPC API
but requires more complex data structures. However, for this to work, the Java class must
be available on the client side in order to be able to reconstruct (deserialise) the object.

JAPC relies on the CMW directory service to select the appropriate extension or middleware
to be used. Nevertheless, for more complex cases, JAPC supports custom resolvers that
allow the routing to be modified. For example, allowing calls to a CMW device to be
redirected to a Java server (e.g. the InCA server) in order to perform additional actions
(e.g. trim history, setting computation, etc.) before sending them to the CMW server.

14.3 JAPC 91

Figure 14.4: JAPC’s main interfaces and their relationships

JAPC also supports parameter grouping. Multiple parameters can be assigned to a group in
order to perform batch operations. The implementation for get/set operations is relatively
trivial. However, it gets much more complicated for the subscriptions, as the updates of the
different JAPC parameters need to be grouped accordingly. As explained in section 4.1,
our accelerator chain produces beams, therefore, it is natural to group the updates per beam
occurrence. At an accelerator level, a beam is a cycle and the beginning of every cycle is
timestamped (cycle stamp or cycle timestamp). JAPC uses the cycle stamp to group the
updates and extract meta-information from the incoming data, which is then stored in the
header of the parameter value. Similar processing is also done for other types of meta-data,
such as the min/max and units, but this is based on value-item naming conventions.

To ease the decoupling of the application during testing, we developed a JAPC extension
that can simulate device access. One can develop a scenario, including updates, to be
played during the tests, as if the real devices were responding. Also, following the new
trend of using reactive streams, we recently developed a layer on top of JAPC (japc-stream)
that allows you to subscribe, process and republish JAPC parameters with a stream API.
This solution is quite elegant and the fact that it is based on JAPC means that all of the
data sources using the various middleware are available.

Finally, the narrow interface exposed by JAPC is perfect for generic, data-driven applica-
tions. Nevertheless, for specific applications, it is unfortunate not to be able to reuse the
information available in the FESA class design, for example, to profit from compile-time
error checks. For these cases, the FESA tools provide the possibility to generate a set of
Java classes from the FESA class design (the JAPC beans). This is a valid alternative to
JAPC descriptors, allowing the developer to profit from Java features and work directly
with real Java classes. However, this means it is necessary to maintain a FESA class
specific library (JAR file) containing the generated classes.

92 Chapter 14. Middleware

14.3.1 JAPC Monitoring
There are many situations where one needs to monitor several JAPC parameters and post-
process the results. The JAPC monitoring (JMON) layer was developed to cover this need
and improve the diagnostics.

Based on a configuration file, the JMON library subscribes to device-properties in the
Control System and sends the updates to JAPC monitoring modules. The users of the
library provide custom modules in order to synchronise and process the data. One of the
advantages of using JMON is that the module code is isolated from the actual data source,
thanks to the possibility to use symbolic names in the configuration file. In addition, JMON
comes with a monitoring GUI to help with fault-detection and subscription management
(start, stop and restart).

V

15 Core Services . 94
15.1 InCA/LSA
15.2 CESAR
15.3 Logging
15.4 Data Concentrators
15.5 Unified Controls Acquisition Processing
15.6 Post-Mortem
15.7 Alarms

16 Automation . 114
16.1 Sequencers
16.2 SIS

17 User Interfaces and Tools 120
17.1 Graphical Frameworks and Components
17.2 Generic Applications

18 High-Level Development Tools 133
18.1 Best Practices
18.2 Build Process

High-Level
Software

15. Core Services

The components described in this chapter constitute the core high-level services that allow
the control and monitoring of the low-level components described in previous chapters.
They are the foundations for most of the high-level applications.

15.1 InCA/LSA
Depending on the accelerator, slightly different solutions exist in order to take into account
the differences in accelerator operation. For the LHC and the SPS, the core high-level
Control System is centred on settings management via the LHC Software Architecture
(LSA) [39]. For the lower-energy accelerators, LSA is integrated into the Injector Con-
trols Architecture (InCA) [19, 38]. In addition, InCA provides services for accelerator
monitoring and configuration of generic applications (see section 17.2).

15.1.1 Setting Management
As described in chapter 4, CERN’s accelerators run in parallel and produce different beams
for different experiments at the same time. Furthermore, the number of beam types that
can be produced during an LHC run (typically 5 years) is huge, and the settings for all of
those beams cannot be stored in the limited memory of the FECs. During the lifetime of
a beam type, many modifications and optimisations, called trims, will be performed. It
is important to keep a record of the trims in order to understand what has been done and,
if necessary, to be able to revert to a previous situation. For these reasons, the Control
System must provide a solid settings management solution.

The settings are the setpoint values for the hardware that is used to control and monitor the
beams. The majority of the operational devices (see chapter 3) have their settings managed
by LSA. In LSA, a parameter is equivalent to the field (or value-item) in a property of a

15.1 InCA/LSA 95

device. For a parameter used in accelerator control, the setting management stores not only
the current values for all cycles of the accelerator, but also all of the previous values in the
trim history. Thanks to the trim history, one can know the exact state of the accelerator
at any moment in the past. Furthermore, the system allows the user to revert to any point
in time by sending the historical settings to the low-level Control System. Figure 15.1
shows an example of the setting management application in the LSA Application Suite. To
simplify the work of the operators, there is a possibility to indicate that the current set of
settings give certain results and therefore to mark those settings as a reference. For each
cycle, one has the possibility to mark a single value as a reference for a given parameter. It
is also possible to label the current set of settings for a given cycle with a name, and create
what is called an archive. The archive and references can be used to highlight differences
between the current setup and to restore the accelerator or a sub-system to a previously
known state.

So far, we have described what is referred to as low-level setting management. More can
be done by offering an additional layer of abstraction thanks to the concept of a high-
level parameter. High-level parameters are typically more oriented towards the physics
of the accelerator, rather than the implementation details, as exposed by the front-end
computers. LSA takes care of translating values of these high-level parameters into the
corresponding low-level parameters, such as currents to be produced by power converters,
through parameter hierarchies. This allows the direct modification of accelerator properties,
such as the tune or chromaticity, instead of adjusting many low-level parameters. Another
example of a high-level parameter is to control the beam position at a given location in an
accelerator, and the system takes care of computing the deflecting angles and the current
modifications required to achieve them.

Figure 15.2 depicts a parameter hierarchy linking the current of the low-level power
converter with the horizontal chromaticity of the SPS accelerator. For each relationship,
one can define an algorithm, called a makerule, to transition from one level to the next.
Often, these algorithms need additional information related to the optics of the accelerator.
The different optics are available in the LSA database and are calculated by the MAD X
application using data from the Layout database (see chapter 21).

Defining a complete high-level model of an accelerator allows the operators to work with
physics parameters without having to be aware of low-level details. This also allows
them to describe the cycles they would like to play, and generate an initial set of settings
corresponding to the cycle described. However, this approach is imperfect as the model
is never completely accurate and once the cycle is sent to the low-level layer, some trims
are always required. For some of the oldest accelerators, the discrepancy between the
best available model and the real behaviour of the accelerator is so wide that the resulting
initial set of settings calculated from the model is not very useful. Instead, for these
accelerators, the operators copy settings from one cycle to another, thus profiting from
previously optimised values.

A trim process is comprised of several steps. First, the new high-level parameter value is
received and validated. Then, the parameter hierarchy in which the trimmed parameter
is involved is retrieved. By invoking the makerules, the low-level parameter values are
recalculated; this is the actual trim operation. Once all of the new values are available,

96 Chapter 15. Core Services

Figure 15.1: Settings Management application showing the trim history of a power con-
verter in the PS

the system sends the new low-level parameter values to the Front-End Computers; this
operation is called a drive. During the drive, the front-end computers receive the new
low-level settings and perform additional checks before accepting the values. The first
part, the trim, is executed in a single node of the Control System and therefore, if a
calculation fails or yields out-of-bound values, the whole transaction can easily be rolled
back. However, apart from a few exceptions, there is no distributed transaction support
and once the values are driven, if an individual FEC refuses a value or crashes, it is not
currently possible to roll back the whole process. The policy to deal with this type of
situation is accelerator-dependant and can be to either continue and report the error, or to
roll back the trim operation. Neither of these policies are perfect as it is still possible to end
up with some FECs having settings that differ to those stored in the settings management
system.

Contrary to the FECs, which can only have a limited number of timing users, the setting
management can handle as many cycles as needed. There is a mapping between the cycle,
which only exists at high-level, and the timing user in the low-level front-end computer
(see section 4.3). A cycle that is not associated or mapped to a timing user is called a
non-resident cycle. It is still possible to work with a non-resident cycle, as the low-level
parameters can still be calculated. However, once the calculation is finished, there is no
drive, and as such the validation of the new value by the front-end computers is not done;
making the operation more theoretical and reserved mainly for cycle preparation.

A setting context is a container for settings for a single beam in a single accelerator. The

15.1 InCA/LSA 97

Figure 15.2: Parameter hierarchy for the SPS horizontal chromaticity control

type of setting context depends on the nature of the accelerator (cycling machine, collider,
linac, etc.) and, for the majority of CERN accelerators, a setting context corresponds
to a cycle. However, for machines such as the LHC, where the cycle length is not pre-
determined, as it depends on the machine performance, the setting context does not
correspond to the whole cycle. Instead, the cycles are assembled progressively from a set
of beam processes. In this case, LSA uses beam process as the setting context. In addition,
even for accelerators that have cycles as setting contexts, the beam process concept can
still be used to build cycles.

From an operational point of view, the parts of the cycles where there is no beam in the
machine is less important. In these cases, we want to reach the next level as fast as possible,
taking into account the hardware constraints, e.g. the ramping rate of the power converters.
These parts of the cycle are known as "BeamOut" and are computed by LSA using link
rules. Figure 15.3 depicts an SPS Super Cycle decomposed into several beam processes;
the BeamOuts are shaded.

Figure 15.3: Beam processes in a typical SPS supercycle

98 Chapter 15. Core Services

Since 2017, all of the accelerators have their settings managed by LSA. Starting in 2003,
the development of LSA initially focused on the SPS and the LHC, with the SPS used to
validate the system under development. From 2008, it was decided to homogenise settings
management and to extend the functionality of LSA to cover other accelerators such as
the PS, the AD, etc. The current implementation is based on a Java server and a relational
database as depicted in Figure 15.4.

Figure 15.4: LSA high-level architecture

15.1.2 Acquisition and Monitoring
For the smaller accelerators, operators have stronger requirements for the Control System
to provide a constant flow of acquired values. In addition to acquiring the values, post-
processing must be done in order to indicate the status of the machine or a subset of
elements. This constitutes the second main aspect of InCA and is commonly referred to as
the Acquisition Core.

Front-end computers are much less powerful than the available servers and consoles, even
though since 2012, this has been improved with access to multi-core SBCs with 1GB+
of RAM. It often occurred that too many clients were requesting the same data for the
same timing user, from the same set of devices, at the same time. This, coupled with
scalability issues in CMW-RDA2, led to an unstable operational environment with many
applications cycling between disconnection and reconnection. Taking into account that the
PS complex’s operators wanted to monitor many accelerators’ low-level parameters and
display them in tables called WorkingSets (see section 17.2.1), it was decided to build the
Acquisition Core (AcqCore).

The AcqCore subscribes once, and only once, to a given device-property with the ALL
selector, i.e. without timing selector filtering, instead of every client subscribing to their
parameters for their specific timing user. Furthermore, to prevent the FECs from being
disturbed by constant requests to subscribe and unsubscribe, when a client disappears, the

15.1 InCA/LSA 99

subscription is maintained for a given duration, as it is likely that the same parameters will
be required by another client. This means that the FECs have a more stable load as the
maximum network load is now defined as the ability to send all of the device-properties
once every timing user. Therefore, we are now able to verify that a FEC scales correctly
up to its maximum load.

The AcqCore is also responsible for enhancing the acquired data. This can be done
in two ways, by status computation or through virtual acquisition parameters. Status
computation is when the AcqCore compares the acquired value, which can be either a
setting or an acquisition parameter, with either the reference value or the corresponding
setting value respectively. This comparison, taking into account associated tolerances,
gives an indication of the accelerator’s behaviour; are the quadrupoles producing the
requested current? Which elements in this transfer line are not set to their reference value?
The calculated status information is sent to the User Interfaces (UIs) and represented in
the graphical components as a background colour. Figure 15.5 depicts part of the status
algorithm as defined in the initial specifications of InCA.

Figure 15.5: Status calculation for setting parameters

100 Chapter 15. Core Services

The virtual acquisition parameters are the acquisition counterpart of the high-level control
parameters used in parameter hierarchies but working bottom-up instead of top-down. As
for the control parameters, algorithms are attached to the transitions. In this case, they
are called calculation rules instead of makerules. For example, in the ISOLDE machine,
four magnets had to be controlled so that they appeared to behave like a single quadrupole.
Settings are calculated as LSA makerules and a calculation rule is used to compute the
average current from the individual power converter acquisitions.

The AcqCore’s implementation has to be scalable, as we typically process several thousand
values every cycle. Acquisition values arrive throughout the cycle and some values
requiring post-processing may arrive during the next cycle. To maintain the user-experience,
the system is triggered every 250ms to perform the evaluations of the parameters already
available and distribute the result to the clients. After a grace period, well into the following
cycle, exceptions are generated for parameters that were not updated for the last cycle.

As for most of our high-level services, the AcqCore is driven by a database and one of the
challenges is to perform live configuration updates without disturbing the service.

15.2 CESAR
In the experimental areas such as the SPS north area and the PS east areas, we have a
number of short-term experiments taking place in succession. They are short-term when
compared with the LHC experiments that were installed with the accelerator itself and will
remain in place for its entire life (25 years).

An accelerator operator is hired to expertly run the accelerator and needs a deep under-
standing of how the machine and its Control System work. A physicist typically comes to
CERN for a short period of time in order to conduct an experiment and only has to be able
to perform a limited set of control actions on his beamline. Therefore, the physicists need a
simplified Control System. Many controls concepts such as the machine multiplexing can
be safely ignored when operating the experiments, and so the user interface and feature set
can be greatly simplified.

For these reasons, in 2000, the CERN Experimental Areas Software Renovation (CESAR)
project was launched in order to provide modern high-level software for the experimental
area controls. It is worth noting that the low-level controls are based on the classic stack,
as described in this document, since the implementation details of the low-level layers can
be hidden from the end-users.

In order to make things even simpler, CESAR implements specific virtual devices hiding
the complexity of the low-level devices. For example, if a collimator is realised with
two motors, CESAR exposes a virtual device representing the collimator, concealing the
motors from the users. This gives a better integrated and more user-friendly system, which
is easier to configure, but the drawback is that custom code is necessary whenever a new
type of equipment is installed in the beam line.

Less experienced users are restricted to operating equipment within very specific zones. A
lightweight access control, relying on the CESAR’s knowledge of the beam line structure,
defines the zones and the range of equipment that the user can work with.

15.2 CESAR 101

In addition, CESAR provides features that are specific to experimental areas such as scans
and beam files. Scans are typically performed in experimental areas when the expert
physicists set up the beam for an experiment and try to optimise a set of parameters by
scanning the range of values of other ones. For example, as shown in figure 15.6, one can
optimise the beam transmission by changing the current in the quadrupole magnets. We
have custom scans for each type of equipment, such as magnets, collimators, etc. The scan
implementation handles all logic to automate the scan and the only thing required from
the user is to describe what he wants to do, through its API. Internally, the scan package
validates that the device is ready, sets the new value, waits for the device to reach its steady
state, measures the corresponding results, and verifies that the results are correct. The
output, the raw data, is displayed on a graph.

Figure 15.6: Optimising the beam transmission by changing the current in a quadrupole
magnet

A beam file contains all of the settings for a whole beam line. They can be seen as a bag of
settings without history. Furthermore, the user can create archives of beam files and reload
them, or part of them, when necessary using the mechanism provided by CESAR. The
mechanism handles the different steps such as turning off the beam, restoring the settings,
etc. The user can also modify the beam files offline with an editor or Excel.

CESAR is based on the technologies that were available and recommended by BE-CO at
the time of its development [7, 28]. At the core of the system is a client-server architecture
written in Java. The noteworthy difference between CESAR and LSA is that the former is
not database-driven. Indeed, the implementation of the logic is based on custom Java code
and heavily uses the FESA bean generation, providing type-safe property access; something
not easily done with a database-driven system. The GUI, depicted in figure 15.7, relies on
an old version of Netbeans (i.e. Swing). As for the other client-server systems developed
in the early 2000s, the communication is based on RMI for the command/response and on
serialised Java objects sent via JMS for the server-client communication.

102 Chapter 15. Core Services

Some consolidations of the system are foreseen, such as the replacement of the GUI and a
review of settings management, which could be merged into LSA. Nevertheless, unifying
the settings management will not remove the need for the simplified controls environment
provided by CESAR. The possibility to base access control on the RBAC service (see
section 13.2 for details), instead of the current custom solution, needs to be investigated.

Figure 15.7: The CESAR GUI

15.3 Logging
The CERN-wide Accelerator Logging Service (CALS) was born out of the LHC Logging
Project (a sub-project of the LHC Controls Project) which was mandated in October 2001,
based on the experience with LEP [49]. The current mandate can be summarised as:

• Information management for accelerator performance improvement;
• Meet Installation Nucleaire de Base (Basic Nuclear Facility) (INB) requirements for

recording beam history;
• Make long-term statistics available for management;
• Avoid duplicate logging efforts.

The scope covers the whole CERN accelerator complex and related infrastructure. Stake-
holders are from all over CERN, including representatives of operations teams, equipment
groups, and physicists. The acquired data is expected to be persisted online beyond the
lifetime of the LHC.

CALS persists time series data coming from pre-defined signals into Oracle databases,
and provides an API and a generic application (TIMBER) that can be used to extract and
visualise logged data. Conceptually, time series data is persisted and made available for so-
called "variables". A variable represents a quantity or status (e.g. coming from signal), and
is an abstraction from the underlying implementation of the data acquisition infrastructure
(e.g. GM properties, FESA device property fields, FGC properties, WinCC OA data points,

15.3 Logging 103

Technical Infrastructure Monitoring (TIM) tags, RAMSES data points). This abstraction
remains valid over time and across changes in the underlying data acquisition infrastructure.
It also serves the end users of the data (which are usually diverse and different from the data
acquisition infrastructure developers), by adhering to the CERN-wide Quality Assurance
scheme for naming of entities and signals – which helps to find signals (of which there
are more than 1.5 million) based on the names, which usually correspond to the physical
functional entities that makes up the CERN accelerator complex.

Fundamental data is another logging-specific concept which deals with certain time series
data that identifies fundamental events in the accelerator complex – namely at a moment in
time, for a given accelerator, for what the beam being used e.g. for cycling machines like
the SPS – what was the LSA cycle configuration, what was the timing user and what was
the beam destination. This data can then be used to filter normal time series data in order
to only retrieve data when certain conditions were met (e.g. SPS beam intensity for 25ns
beams sent to LHC). For the LHC, which is not a cycling machine, fundamental data can
be considered as the LHC fills – each identified by a unique number, and containing one or
more beams modes (e.g. setup, injection, ramp, squeeze, adjust, stable, ramp down).

The current system has proven to be extremely reliable since it was first put into production
in September 2003. It is highly available, with almost no downtime over the last 15 years
[48, 51]. It is also highly scalable in terms of data ingestion, particularly with respect to
initial forecasted data rates of 1TB/year for LHC operation – in 2017 data rates exceeded
2.5TB/day. The current system is relatively simple in terms of number of components,
installation, updates etc.

In order to achieve the high performance required, the design and implementation leverages
a huge number of highly advanced, Oracle specific optimisations – both in the database
itself and Java Database Connectivity (JDBC) code that inserts or extracts data [50, 54].
To maintain or extend the system further requires a very high-level of Oracle expertise –
something that, for many years, has been increasingly difficult to recruit for.

Although the system has scaled well in terms of data ingestion and provides linear response
times to extract data over time (irrespective of the total stored volume of data), the
stabilisation of operating the LHC, combined with the need to prepare for HL-LHC, led to
new ways of using the system post-LS1. Certain user communities aim to store a lot more
complex data (e.g. so-called bunch-by-bunch and turn-by-turn data stored as large vectors
or 2d arrays) to perform regular analysis of such data over extended periods of time (e.g.
weeks to months), in order to study new ways to optimise beam configurations and identify
the most efficient operational scenarios. Once ingested, the current system struggles to
filter such large complex data, and in terms of analysis, is simply too slow to extract the
data (e.g. taking up to half day to extract one day of complex data).

Depending on the type of data, it is logged into a short-term storage (speed layer) and/or
a long-term storage. The extraction facilities can extract data from both data stores in a
manner more or less transparent for the end user. Data can be extracted as logged (i.e.
all data for a given signal during a given time window), or pre-filtered and/or aggregated
following some common uses cases (e.g. periodic average within a window, aligning data
for multiple signals whose raw data was acquired at different times, filtering of data based
on values or coincidence with data from a given driving signal).

104 Chapter 15. Core Services

The first production version of the CALS system was used in September 2003 to cap-
ture data from the first TT40 extraction tests (extracting beams from the SPS into the
transfer tunnel towards the LHC tunnel). In 2005, the Measurement Database (MDB)
was developed to act as a short-term persistence and speed layer for data acquired from
CMW accessible devices [53]. Optional transfer of data towards the long-term storage in
the Logging Database (LDB) was made available at the same time, offering data-driven,
configurable filtering of data based on value changes or elapsed time. Figure 15.8 illustrates
the original architecture and how it integrates in the Control System.

Figure 15.8: CALS architecture overview

In 2012, the CALS system was capturing some 5 billion records per day, and serving
approximately 5.5 million user requests per day to extract time series data sets of varying
sizes. This was for a user community of more than 1000 people from across CERN,
using either TIMBER or one of more than 130 custom applications built on the common
extraction API.

In 2017, the CALS system continued to satisfy the needs of many users and its scope
continued to expand to cover the needs of new experiments and facilities such as Advanced
Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) and LINAC4. Never-
theless, new ways of using the system post-LS1 have generated additional loads on the
internal data processing, and exposed shortcomings with respect to data analysis. As such,

15.4 Data Concentrators 105

during the first half of 2016, a prototype for a new logging system was developed based
on modern, open-source, horizontally scalable, Big Data technologies and data science
tools. Figure 15.9 depicts the new architecture, along with the main technologies used.
The positive results of the prototype work, combined with an inevitable continued increase
in data rates and data analysis needs in the near future, led to the official launch of the
Next CERN Accelerator Logging Service (NXCALS) project, aiming to deliver a new
production system to replace the current CALS system during LS2.

Figure 15.9: NXCALS architecture overview

15.4 Data Concentrators
There are cases where the data published by low-level front-end computers is not directly
usable by the various services and applications e.g. CALS (see section 15.3) and Fixed Dis-
plays (see section 17.1.3). Typically, some FESA classes expose low-level implementation
details or the data is in an inappropriate form (e.g. 2D array) and some post-processing
is required. In this type of situation, it is interesting to re-expose the post-processed data
using the same device-property paradigm, in order to avoid having application-specific
models or transport. Data concentrators were developed in order to acquire device-property
data, post-process then republish it via the same means.

As shown in figure 15.10, the typical use-case for concentrators is to consume data sources
from different front-end computers that publish data at different moments in time, with no
synchronisation. This means that one of the first things to do in a data concentrator is to
ensure that we have a coherent set of data. This is done in the ‘event building’ layer by
grouping the data streams using acquisition timestamps provided by the timing system.
In a cycling machine, only data with the same cyclestamp can be post-processed together.
For non-cycling machines, we define other criteria, such as a time window.

Since data concentrators are high-level Control System components, they are by de-facto
implemented in Java. The standard method of subscribing to data is with JAPC. As
explained in section 14.3, this allows us to access data from different sources (CMW,
JMS, Timing library, etc.). Republishing used to be done with JMS but was recently

106 Chapter 15. Core Services

Figure 15.10: PS dump concentrator

moved to CMW-RDA3 in order to profit from its advantages. Due to the large amount of
subscriptions that need to be managed, we use a library called JMON (see section 14.3.1)
on top of raw JAPC to ease the process. From a deployment point of view, the approach is
kept simple; there is just one process per post-processing algorithm.

Originally, as the number of data concentrators was limited (∼ 10−15), it was not deemed
necessary to invest in developing a framework. This approach has several disadvantages.
Firstly, each time a new data concentrator is required, a lot of boilerplate code needs to
be repeated and the resulting device-property class needs to be declared manually in the
CCDB. Secondly, because there is no framework, non-java experts cannot develop new
concentrators easily, therefore the controls group has to participate in their development,
despite the fact that the post-processing knowledge belongs to the equipment experts.

In order to overcome some of these shortcomings, the Unified Controls Acquisition and
Processing Framework (UCAP) project was launched. It is described in section 15.5. This
will allow the post-processing logic to be implemented by the operators and equipment
experts, either in Java or languages which are familiar to physicists such as Python. This
approach has proven to be successful by the FESA framework.

15.5 Unified Controls Acquisition Processing
The Unified Controls Acquisition Processing (UCAP) project was launched in 2018, aim-
ing to provide a common implementation for a pattern repeated in many core components:
acquire, process and publish device-property data. Indeed, Data Concentrators (see sec-
tion 15.4), InCA acquisition core (see section 15.1.2) and OASIS virtual signals (see
chapter 23) are all examples where the component subscribes to several device-properties,
synchronises the updates, processes the data and republishes the result as a device-property.

UCAP is intended to replace and extend the functionality of JMON, and provide an easy to
use, online analysis tool. It should be possible to setup a new transformation declaratively,
by specifying the input parameter and how to synchronise them, the transformation to apply
and the device-property model to publish the results. The code for the transformations can
be written by the users in several languages (Java, Python, etc.).

The UCAP high-level architecture has three layers, as shown in figure 15.11. At the bottom,
the Event Builder subscribes to the source parameters and groups the updates according to
the policies defined by the user (e.g. group by cyclestamp). The grouped data is then sent

15.6 Post-Mortem 107

to the transformation to be post-processed, and the top layer handles the publication of
the data, as the specified device-property structure, based on CMW-RDA3. In addition,
UCAP will provide complete diagnostics with metrics and tools to inspect the input and
output flows. It is also foreseen to provide a way to replay events, in order to test the
transformation code. UCAP will rely on the Controls Configuration Service (CCS) to
register the parameters used by a given transformation, as well as to publish the structure
of the result as a so-called virtual device. This will help to improve the support of the
Control System’s constant evolution by detecting backward incompatible changes, such as
the renaming of low-level devices.

Figure 15.11: UCAP high-level architecture

UCAP code is implemented in Java and relies on modern concepts such as streams,
provided by Spring’s Reactor Core. One of the features of this implementation is to
use UCAP as a library and embed it directly in an application, instead of relying on the
server infrastructure. This approach could be used to renovate the Fixed Displays (see
section 17.1.3).

The key challenges when providing the UCAP service are to properly isolate the custom
transformation code to avoid any ripples in the system if the code fails and to have
an infrastructure that will scale properly as increasing numbers of transformations are
deployed. A possible solution to the first challenge is to use Function As A Service (FAAS)
solutions. For the scalability, the group is currently evaluating industry standard solutions
such as Kubernetes, to be able to distribute the individual transformations across several
servers.

15.6 Post-Mortem
When operating a machine as complex as the LHC, it is important to be able to understand
what happens when there are sudden, unexpected events, such as beam dumps. In such
cases, it is important to collect as much information as possible from the different systems
in order to be able to analyse the event comprehensively.

108 Chapter 15. Core Services

The Post-Mortem (PM) system was originally developed for LHC operations [66], but the
functional scope of the system has been extended and now covers other situations such
as the Injection Quality Check (IQC) [23] and system-specific post-mortems, such as the
LHC beam dump system’s eXternal Post-Operation Check (XPOC) [42]. In addition, the
geographical scope was extended to cover other accelerators such as the SPS.

15.6.1 Data Collection and Storage
The first step in the Post-Mortem chain is distributed across all of the electronic boards
and software processes that have the responsibility for gathering their own post-mortem
data. This is typically a small rolling buffer of high-frequency data that is frozen upon
receiving an event. For example, for the LHC, these events are Post-Mortem 1 and 2 and
Dump Ring 1, or Dump Ring 2. Once an event is received, the software processes in the
agents collect the data and send it to the central PM server. The Post-Mortem Front-End
(PMFE) server stores the data in the fast storage and notifies the PM back-end service, as
shown in figure 15.12. In turn, the back-end service triggers the transfer of data from the
front-end storage to the larger, but slower back-end storage.

Figure 15.12: Current Post-Mortem architecture

Since it is vital not to lose any PM data, the data transfer between the FECs and the PMFE
server cannot rely on loosely coupled mechanisms such as publish-subscribe. Instead, we
rely on RDA2 set operations, which guarantees and acknowledges when the data has been
written to the FE storage. For scalability reasons, there are multiple PMFE server devices,
which receive data through the RDA sets. The device to be used by a given front-end
computer will depend on the data domain i.e. BLM, FGC, etc. Although this mechanism

15.6 Post-Mortem 109

does not provide real run-time load balancing, the load is distributed, but statically.

In order to allow fast collection of the data, the PMFE store is a mix of Solid State and
Hard Drive Disks with a total capacity of 1TB. On the other hand, the PM back-end store
is based on RAID10 and the ext4 journalised file system. It can store up to 11TB of
Post Mortem data. The data is stored in files as serialised CORBA objects, as this is the
underlying technology for CMW-RDA2.

The data published by the FECs is structured in three levels: system, class and source. The
system and class define the data schema and therefore cannot be changed without breaking
the analysis modules. Examples of systems include BLM, FGC and their corresponding
classes could be BLMLHC, FGC51, etc. The systems are defined and assigned by the
PM team in collaboration with their users. Typical sources are the names of the front-
end devices providing the data. In addition to the data, there is a data qualifier (e.g. test,
incomplete), a timestamp and other meta-data, describing units or array mappings, amongst
others. The data is stored as it is received, without any modifications, but upon being
read, it can be adapted to take into account new versions or to fix problems. With this
system-class-source data structure, a given front-end device can send data for more than
one system-class.

The next step in the Post-Mortem processing is the event building, which ensures that all
of the data required for the processing is present and coherent. There are several event
builders depending on the specific Post-Mortem instance, but the default one works as
follows: Upon reception of the first data, a collection window is opened using the data
timestamp t0. By default, the collection window spans a range from t0-100ms to t0+800ms.
The window stays open for a period of 12 minutes to allow all of the relevant data to be
collected, and any data received during this time with a timestamp in the collection window
becomes part of the event. Once the event building is complete, an event file is persisted in
the storage, containing references to the different data files. If during the collection period,
another piece of data is received with a timestamp falling outside of the current collection
window, a new collection window is opened and the processes are maintained in parallel.

The vast majority of the data used to build events comes from the post-mortem storage,
however in a few cases the event builder also takes data from JAPC parameters, such as
timing data that is not pushed into the post-mortem storage.

The 12-minutes of data gathering may appear excessive, but some systems are slow to
provide data. Therefore, in order to provide faster feedback to the operators, a pre-analysis
is triggered after 2 minutes, as by this time the majority of the required data will be
present. Nevertheless, the latency of the current PM system limits the performance of some
operations, such as the injection and dump. In an ideal world, this would be performed for
every SPS cycle i.e. every 10 seconds, but due to latency, it can only be performed every 2
minutes.

15.6.2 Data Analysis
The Post-Mortem Analysis (PMA) framework [31] executes analysis modules that are
usually developed by the equipment experts or operations team. The modules are organised
as a graph, as shown in figure 15.13.

110 Chapter 15. Core Services

Figure 15.13: Graph layout of Post-Mortem analysis modules

The current PMA system contains approximately 50 analysis modules of varying complex-
ity. An analysis module is a Java class that implements a specific interface. In order to ease
the development of the modules, Java Beans are generated to represent the incoming and
outgoing data. In addition, the framework provides typical features to ensure data integrity
and ease debugging, such as a graphical view. The PM analysis system also allows an
analysis of an event to be replayed on an offline system, thus allowing the developer to
develop and debug his analysis code or to use additional data by extending the collection
window.

The execution is triggered by the event-builder module and uses data directly from the PM
storage. In turn, the results of the analyses are sent back to the PM storage and if necessary
they can also be exported to SIS (see section 16.2) or sent as a report by email.

The Post-Mortem system is the only event-based analysis solution in the Control System,
and it is being applied to more and more use cases. However, the current architecture,
initially developed in 2008, is starting to show its limitations. The implementation based
on NFS exposing serialised CORBA objects in files has leaked into the clients and the
RDA2 sets are synchronous calls, blocking calling threads. The analysis part depends
on JMS and is implemented as a monolithic structure, and as such, does not scale well
horizontally.

In the near future, the data collection and storage will be refactored based on the solution
put in place for NXCALS. The PM front-end service will be replaced by a set of data
collectors that will send the data to NXCALS through its ingestion API. However, Post-

15.7 Alarms 111

Mortem system requires faster access to the collected data than the latency foreseen by
the initial NXCALS design, for this reason it is necessary for the Analysis Service and
Event Builder to access NXCALs data through a low-latency access point, as depicted in
figure 15.14. In addition, the first version of the data collectors will be based on RDA3,
but further study is required in order to improve the load-balancing capabilities of either
RDA3 or another specific solution [30].

Figure 15.14: New architecture of the Post-Mortem system

On the analysis side, the long-term plan is to allow analysis modules to be deployed
independently. This will solve two common problems with our high-level systems, firstly,
that deploying a single change requires a complete redeployment, and secondly, external
contributions that do not work properly cannot easily be isolated.

15.7 Alarms
An accelerator is made of many sub-systems that can fail and require interventions from the
operators. The information that something requires attention is conveyed through alarms.
LHC Alarms Service (LASER) is the system that handles alarms for both accelerators and
the Technical Infrastructure (TI). Today, LASER handles 350,000 potential alarms.

TI alarms cover subsystems such as electricity distribution, cooling and ventilation etc. and
the operators handle problems in a very classical way [60]. Alarms are displayed until the
operators acknowledge them. They are prioritised, and introducing a new alarm requires
formal documentation. On the other hand, for the accelerator operators, alarm handling is
more flexible and alarms are automatically acknowledged if the error condition disappears.
The accelerator alarms can be active on one cycle, but not another; therefore, the alarm
system needs to be aware that the accelerators are multiplexed.

In LASER, the subsystems producing alarms are called alarm sources and an individual
alarm is identified by a triplet of fault family, fault member and fault code. The alarm
sources periodically send an alarm message to the LASER server, describing any alarm

112 Chapter 15. Core Services

that was activated or terminated since the previous message. Today, this is based on JMS.
On the server-side, alarm definitions are fetched from the CCDB and the basic message is
augmented with additional data such as the alarm priority and description. Then, the alarms
are grouped by alarm category e.g. PSB operations, before being sent to the Graphical
User Interfaces (Alarm console) subscribed to the given alarm categories. On the alarm
console, as depicted in figure 15.15, the alarms are displayed, sorted by priority, in order
to ensure that the most urgent action is taken first. Another element of the LASER system
subscribes to all of the categories and archives the alarms, in order to keep a history. For
the accelerator domain, the biggest alarm source comes from the controls devices. To avoid
introducing a new concept in parallel to the device-property model, the device’s alarms
are exported through a specific property. Alarm Monitor processes subscribe to the alarm
properties and transform property notifications into alarm messages.

Figure 15.15: Alarms console

Two challenges of alarm systems are reliability and avalanche control. The alarms system is
particularly required when major faults occur, therefore the alarm system must not be built
upon the same infrastructure as the systems it supervises. In order to avoid dependencies
on the Controls Configuration Database (CCDB), the alarm definitions are extracted and
stored in an offline XML file. Likewise, the archiving process is decoupled from the main
process, thanks to JMS, and furthermore if it cannot store the new alarms, it falls back on a
local text file.

Also, when a major event occurs, many systems will produce alarms, a so-called avalanche,
and the system must be designed to handle this type of situation smoothly. In addition,

15.7 Alarms 113

the system has to take into account that some alarm sources can fail and start flooding the
server with alarm messages. The strategy in LASER is to introduce flood-control at the
source level and ensuring that the server can handle a predefined number of messages,
typically 250 messages per minute.

Before the LASER project was launched in 2001 [13, 34], there was a system called the
CERN Alarm System (CAS) that had been developed in the 90’s. The first version of
LASER was based on technologies of the time such as J2EE and Oracle OC4J. Since
then, the system has been simplified and is based on more modern components to ease
maintenance. Figure 15.16 shows the current architecture.

Figure 15.16: LASER architecture

As described during the introduction, there is a big difference between the way that the TI
alarms and the accelerator alarms are handled by their respective operators, and therefore,
in 2017, it was decided to split the two domains and have a specific system for each.
From now on, LASER-lw will handle accelerator alarms only, and CERN Control and
Monitoring Platform (C2MON), whose description is outside the scope of this document,
deals with the TI alarms.

16. Automation

The low-level Control System provides the means to automate processing as described in
chapter 11. At that level, the timing events are the most common source of triggers and the
control is normally limited to the local FEC. There are two main use cases where we want
to automate the actions in the Control System at a higher level. The first one is event-driven
and works very much like the FEC case but using distributed sources and actions; this is a
scenario where the Software Interlock System, as described in section 16.2, can be used.
The second case is typical of huge machines, such as LHC, where the number of actions to
be performed can be daunting (hundreds or even thousands of steps). What is needed in
these situations is a tool that performs a suite of actions in a repeatable manner therefore
removing manual, error-prone tasks from the accelerator operators; this is a job for the
Sequencers.

16.1 Sequencers
The Controls group provides two different sequencers for two different purposes. The
Hardware Commissioning Sequencer (HWC) for automating hardware tests [6] and the
Beam Operation Sequencer for automating beam operations in the different accelerators
such as the LHC, SPS, and LEIR.

At the heart of the sequencers, there is the concept of a task. A task interacts with the
accelerator equipment, typically by setting a new value, followed by a read operation to
either check the hardware or wait for a condition. For more complex operations, one can
assemble several tasks into a macro task. In addition to automating common operations,
the sequencers behave like a debugger, allowing the operators to set breakpoints and skip
tasks. As not respecting the designed sequence may require more advanced knowledge
and jumps can create problematic situations, different modes exist; a safe mode without
jumps, and a MD mode with all the options, the latter being the current default.

16.1 Sequencers 115

As most of our high-level software, the sequencers are implemented in Java and therefore,
we can profit from the usual tools, such as Version Control Systems (VCSs).

16.1.1 Hardware Commissioning Sequencer

The hardware commissioning team focuses on the validation of the LHC electrical circuits
and for that purpose, they need a tool to write and execute test suites as sequences of
actions in a given order. The execution of the test sequences needs to have some flexibility,
such as flow-control i.e. if and loop statements. The Hardware Commissioning Sequencer
has a fail-fast approach in the sense that the running sequence is terminated on error. Due
to the limited complexity of the tests, only a one-level sequence is required.

Following the requirements and taking into account the limitations of Java, the sequencer
is based on Pnuts, a Java-compatible scripting language. Indeed, Java does not allow the
possibility to skip statements and only provides breakpoints. To stay with known and
supported technologies, the sequences are written in Java and either transformed into Pnuts
scripts for production or executed directly in the Eclipse IDE at development time. This
possibility is a clear advantage of using Java, as it eases the development and debugging
of sequences. Figure 16.1 shows an example of the Hardware Commissioning Sequencer
GUI.

Figure 16.1: Hardware Commissioning Sequencer

116 Chapter 16. Automation

16.1.2 Beam Operations Sequencer
This sequencer was initially created to drive LHC operations but since then it has been
extended to the injectors, where it is used to automate routines that are common to several
cycles.

In the case of the LHC Beam Sequencer, there is no need for control statements at the level
of the sequences, just a list of actions to execute in order. On the other hand, a nominal
LHC sequence can have thousands of steps. With such a complexity, n-levels of sub-
sequences may be required, as well as the ability to group and reuse routines. Therefore,
a structure made of sequences, sub-sequences, and tasks was developed. Another new
requirement was the possibility to execute tasks in parallel and to be able to jump forwards
and backwards in a sequence. Figure 16.2 displays part of the "LHC Nominal" sequence.
Unlike the Hardware Commissioning Sequencer, the LHC version is not fail-fast. If an
error occurs, the sequencer stops and waits for the operator to either fix the problem or
skip the task.

When creating tasks, one has to bear in mind that sequences and tasks cannot exchange
information between themselves, as they do not return values. However, sequences and
tasks can receive input arguments from higher level sequences. In addition, there are
limitations that have to be taken into account when choosing between macro-tasks and
sub-sequences for more complex operations as, for example, sub-sequences do not have
flow control.

As the Pnuts engine could not be sufficiently extended to cover all of our requirements,
the LHC Beam Sequencer is based on a home-made Java engine. Unfortunately, this new
implementation cannot be reused for the Hardware Commissioning Sequencer, as some
features, such as loops, are not available.

The operators are in charge of creating the sequences, as they have the best global view of
the accelerator. On the other hand, the individual tasks are developed by the experts from
the equipment groups. For example, the BE-BI group implements specific tasks for their
equipment.

The operators use an editor for composing sequences, without needing to write any code.
Tasks are displayed as blocks, which can be dragged and dropped into sequences. The
editor also provides value completion, advanced editing and validation. Behind the scenes,
it generates Java code required to call the tasks, which are Java methods with annotations.

16.2 SIS
The LHC is a complex and expensive machine, and hardware and personnel need to be
protected. The Beam Interlock System (BIS) is a failsafe hardware interlock system,
with hard real-time constraints. The Software Interlock System (SIS) was developed as
a complement to the BIS for configuring higher-level interlocks in a more flexible way,
without the need for additional physical hardware or cables. SIS covers the need to react to
inputs from the Control System with custom logic that can be implemented by operators.

SIS is more focused on ensuring operational efficiency, rather than machine protection.
SIS not only acts as an interlock system during beam operations, but also as a tool to

16.2 SIS 117

Figure 16.2: LHC Sequencer execution GUI

ensure that operational conditions are met before injection.

The core concept in SIS is the Permit. A permit can be considered as a tree where nodes
are logical expressions. The left-hand side of figure 16.3 shows a permit tree for Ring 1 of
the LHC.

Leaf nodes or Individual Software Interlock Channels (ISICs) are usually simple logical
expressions taking values from devices in the Control System e.g. current of Power
Converter abc > 10 amps. The intermediate nodes are called Logical Software Interlock
Channels (LSICs), which combine Boolean results from the lower-level nodes. On every
node, one can attach exporters that perform certain actions based on the evaluation of
the node, such as creating an entry in an e-logbook, trimming a parameter, activating or
terminating an alarm etc. Since any node can have exporters, it is important that all of the
nodes are always evaluated. Indeed, typical optimisations to skip node evaluation, such
as when the upper node performs an OR operation and the final result is already known,
cannot be applied here.

118 Chapter 16. Automation

Figure 16.3: Permit tree for LHC ring 1

At the node level, specific behaviour can be configured. For example, a node can be
masked to always return true. A node can also be latched, meaning that once it has been
evaluated to false it will stay false, even if the next evaluation is true. It will stay in this
state until an operator manually unlatches it using the SIS GUI or API.

The system is also fault-tolerant by configuring a counter, which allows a node to be
evaluated to false, only once it has been consecutively evaluated to false a certain number
of times; thus protecting the system from transient false-positives.

Similarly to other high-level acquisition and processing components, SIS evaluates the
trees when triggered. It relies on JAPC Monitoring (see section 14.3) to acquire the device
properties and generate triggering events.

Permits can be defined in two ways. XML for the simple expressions or a Groovy Domain
Specific Language (DSL) for more powerful constructs. The XML approach is preferred
by the users due to its simplicity, especially since one can reference Java classes in the
XML in order to extend the logic with Java code. Figure 16.4 gives an example ISIC
definition in XML. Since the definition of nodes can be quite repetitive for large machines,
it is possible to use Velocity as a templating language to generate the XML configuration.
The majority of the permits are written using a combination of XML and Velocity. The
DSL option is seen by most users as a complex approach, which is harder to work with,
and has little added value, as facilities for debugging and testing are not available.

Figure 16.4: ISIC definition in XML

16.2 SIS 119

Performance is a key parameter in all interlock systems. The typical evaluation time
for a permit is in the range of 200-300ms, for most of the use-cases, this is satisfactory.
However, we have permits for the PS stray-field compensation in LEIR and PSB which
have to acquire, evaluate and act within 1 basic period i.e. 1.2 seconds (see chapter 4).

Started in 2005, SIS is now a mature component and is almost feature complete. The
operators are usually able to write their own logic independently. On the other hand,
improvements to the permit documentation (history of evaluations, result traceability, list
of actions taken) is required. Today, most of the information used to understand permit
results are stored at the GUI level, thus limiting the availability and depth of permit history.
This will be relocated to the server-side. In the future, it is foreseen to replace the XML,
Groovy and Velocity configuration by a more unified alternative, such as Kotlin. This will
provide much-needed features such as debugging, interoperability with Java code and IDE
integration etc. The JMON Acquisition layer will also be replaced with a new acquisition
layer based on the UCAP initiative (see section 15.4). The new layer should offer better
tools to visualise, supervise and test the input signals of an application.

17. User Interfaces and Tools

At the top of the Control System stack are the Graphical User Interfaces11 (GUI). These
GUIs are used by a diverse user community, from accelerator operators and physicists, to
equipment experts. The BE-CO group provides several customised graphical toolkits and
frameworks to build specific accelerator applications. In addition, the group supplies a few
applications to interact generically with the accelerator equipment.

17.1 Graphical Frameworks and Components
BE-CO has developed several frameworks and toolkits of components in order to streamline
and standardise the development of Graphical User Interfaces. Some frameworks are non-
accelerator specific, such as JDataViewer and Accsoft Commons Web (ACW), whereas
others are aware of core concepts of the accelerator Control System, such as timing and
the device property model (see chapters 3 and 4). For the construction of the LHC, the
technology of choice for developing GUIs was Java and its main toolkit, Swing. However,
since 2018, it is clear that the evolution of Java is moving away from graphical applications,
even for JavaFX, which is much more recent than Swing. In parallel, web technologies
are now the de-facto standard in industry for GUIs and the Python language has gained
enormous popularity. Therefore, the future investment in the group are towards these two
technologies and the first initiatives are described in sections 17.1.4 and 17.1.5.

17.1.1 JDataViewer
The JDataViewer covers the charting needs of the Control System. It was initially developed
because there were no free, open-source alternatives available with the required feature set
[37]. JDataViewer has the performance to display multiple graphs efficiently. In addition,

11The term Human Machine Interface (HMI) is also commonly used to refer to this layer of the Control
System.

17.1 Graphical Frameworks and Components 121

it supports direct, graphical data editing for modifying functions. Figure 17.1 depicts the
point edition functionality of the JDataViewer. The first version was developed in the
early 2000s, but has since undergone heavy refactoring in order to obtain the required
performance. The current version of this mature component is written using a combination
of Swing and Java2D. A few years ago, a JavaFX version was also developed to cover
CERN’s special needs not fully fulfilled by the JavaFX charting package [36].

Figure 17.1: JDataViewer point edition

17.1.2 AscBeans and Frame
The AscBeans make up a graphical toolkit of reusable components, which are aware
of Control System concepts. Thanks to this built-in knowledge, AscBeans are data-
driven and can work out of the box, just by specifying a JAPC parameter name and an
accelerator context name. This is achieved by retrieving all of the required information
from data services (mainly the InCA server), via descriptors. JAPC provides three types
of descriptors; the device, parameter, and value descriptors. A descriptor is a map of
configuration data and each descriptor provides information at different levels. For example,
the parameter descriptor provides parameter information such as the PPM-ness and the
value descriptor focuses on information about the value itself, such as its type and format
pattern.

AscBeans allow operators and application developers to create GUIs to interact with
the accelerator devices in an easy way, without having to manage common concerns.

122 Chapter 17. User Interfaces and Tools

For the communication, the AscBeans handle the subscription and data synchronisation,
ensuring that all pieces of information belong to the same accelerator cycle. For the
graphical aspects, the AscBeans render parameters according to their descriptors, selecting
an appropriate component depending on the value type. Figure 17.2 depicts an example of
an enumerated parameter as a combo box on the left, and a continuous numeric value as a
wheel switch on the right.

Figure 17.2: ASC Bean for enumerated and continuous numeric values

In addition, the AscBeans use the parameter’s status coming from the InCA Acquisition
Core (see section 15.1.2) to set the background colour, as standardised by Operations.
Figure 17.3 shows an example of a healthy parameter with a green background and a
parameter in an error state in red.

Figure 17.3: Parameter status displayed in ASC Beans

All of the AscBeans provide a contextual menu giving access to several tools, such as
the PPM comparator and the trim history viewer. Furthermore, there is also a large set
of directly accessible diagnostic tools. As visible on figure 17.4, the user has access
to diagnostic tools across all of the different layers, such as the JAPC/RDA diagnostic
tool (aka JAPC toolbox) for the client-server communication, the FESA navigator for the
front-end layer and the TGM tools for the timing system.

In addition to the AscBeans, the Frame (accsoft-gui-frame) provides the foundations for
an application. By default, all GUIs based on the frame, are provided with a menu bar and
a toolbar with generic tools, such as accelerator context selection, as well as a console to
display error messages and diagnostic traces.

The current implementations of AscBeans and the Frame are in Java Swing, but the
concept and early versions date from the 90s and were implemented in X-motif. The
future evolution of the product will depend on the group strategy chosen for the graphical
user interface technologies (JavaFX, Qt, Web). In addition, a few improvements are also

17.1 Graphical Frameworks and Components 123

Figure 17.4: Contextual menu for an AscLabel

requested, such as more flexibility to select the source of data (InCA vs JavaScript Object
Notation (JSON) file) at runtime.

17.1.3 FDF
There are many cases when interaction with the Graphical User Interface is not required.
Typically, these are read-only visualisations of acquired data, displayed on the web or on
big television screens in control rooms. As there are many such cases, it was decided to
develop a tool, the Fixed Display Framework (FDF), to rationalise their development.

At the low-level, FDF relies on JAPC Monitoring to acquire and synchronise the data.
Every Fixed Display is implemented as a JAPC Monitoring module (see section 14.3.1).
An XML file is used to describe the data sources and layout of the graphical components,
which are based on Swing, ASC Beans and JDataViewer. Figure 17.5 shows a fixed display
for LHC RF timing.

For the web distribution and the video streaming, the fixed display instances run on servers.
The web server reads a screenshot of the fixed display (png file) that is periodically created
on the local disk, every 1-5 seconds. For the video streaming, depending on the latency
requirements, two solutions are used. For low-latency cases, a graphics card produces
the video output and a hardware MPEG-4 encoder encodes the video stream, before it is
distributed on the Ethernet network. When high-performance is not needed, a video card is

124 Chapter 17. User Interfaces and Tools

Figure 17.5: Fixed Display for LHC RF timing

not used and instead the screen is rendered in memory and encoded by software.

Initially, the framework was intended to be employed by end-users to develop their screens.
However, the number of developments and their frequency is not sufficient for the users to
master the framework and its various technologies (JMON, Swing, XML, etc.). Therefore,
BE-CO performs the development based on a specification (graphics and text), source of
data, and expected refresh rate.

Whilst the framework is very stable, several drawbacks need to be addressed. Firstly, in
order to allow users to work alone, a simplification of the acquisition and processing part
will be done by replacing JAPC Monitoring with UCAP (see section 15.5).

With the future of Swing being unclear, a replacement toolkit will have to be chosen.
Potential candidates are JavaFX, or Qt. Maintainability should also be improved. Currently,
all required parameters are hardcoded in the XML file, so when there are migrations, or
devices are renamed, this can easily break a Fixed Display. It is hard to proactively detect
these events in a fixed display. Finally, more efficient and cost effective ways of streaming
video and web-distribution should be found.

17.1.4 ACW
Many applications need to be easily accessible from any computer without prerequisites.
For such cases, web applications were developed, as all users are accustomed to these

17.1 Graphical Frameworks and Components 125

types of applications. Furthermore, this allowed the group to introduce technologies that
are popular in the outside world, and hence facilitate recruitment. Previous BE-CO web
applications relied on expensive proprietary products not popular in industry, e.g. Oracle
Apex, and another motivating factor was to move towards more widely used open-source
technologies.

One of the challenges of web development is the large choice of frameworks and tech-
nologies available and their rapid evolution (new frameworks, library versions, forks, etc.).
Therefore, the aim of the Accelerator software Commons Web (ACW) initiative was to
develop and evolve a standard approach to web development in BE-CO, upon which cus-
tom web applications can be based. The idea is that by having a common approach overall,
we will keep development and maintenance costs down, whilst increasing the flexibility
for people to work on one web application or another. Moreover, it is important that
the applications provided to our user community have a common look and feel wherever
possible.

ACW offers a template for the full stack: from client, to server, to database access. In
particular, ACW provides a number of shared aspects including the configuration and
management of common application dependencies, essential features such as security
(Single-Sign-On and RBAC (see section 13.2)), and application instrumentation. On the
client-side, ACW includes some common web application components (e.g. time range
selections, tree navigation, data grids, searching, data input forms, validations, etc.), as
well as application menus and navigation management. Figure 17.6 shows one of the ACW
components, the DSL search.

Figure 17.6: ACW DSL search component with auto-completion and validation support

The ACW server-side software is written in Java, in order to profit from the group’s
expertise, and uses Spring and Spring Boot. The client-side is written in TypeScript and
Sassy Cascading Style Sheets (SCSS), an extension of Cascading Style Sheets (CSS),
and uses the Angular JS framework and libraries such as Bootstrap and Font Awesome.
Additionally, tools such as Webpack, Node.js Package Manager (NPM) and Gradle are
integrated into ACW to package applications, manage dependencies, and support the
development and software building processes. In order to start a new project based on the
ACW framework, a user would check out the so-called ‘Seed’ project12 and fork it into
their own project. In a very short period of time, a client-server application with minimal
content, such as the one shown in figure 17.7 can be created.

The main challenge is to identify developments in individual ACW-based applications that
should be consolidated into ACW. It is also a challenge to coordinate ACW developments

12https://gitlab.cern.ch/accsoft-commons-web

https://gitlab.cern.ch/accsoft-commons-web

126 Chapter 17. User Interfaces and Tools

Figure 17.7: ACW seed application

in a way that ensures evolution of the framework in a coherent way, without negatively
impacting existing applications. In addition, extra time has to be dedicated to maintaining
and evolving ACW on top of the development of individual ACW-based applications.
Nevertheless, there is a clear return on investment.

In 2019, the short-term foreseen evolution includes upgrading the core underlying frame-
works (e.g. AngularJS to Angular, Bootstrap 3 to 4 and Spring 4 to 5) and adapting the
ACW software accordingly.

17.1.5 COMRAD
The Python language has gained popularity over recent years and is a suitable alternative
to the declining Java technologies on the client-side. Indeed, since 2018, it is clear that
the evolution of Java is moving away from graphical applications, for both JavaFX and
Swing. For these reasons, the group has decided to support Python in the Control System.
At the same time, we have taken the opportunity to review the different Java graphical
components in order to assess their relevance after 15 years of development. In addition,
there were strong requests from the user communities to provide a tool with which to
develop simple applications without writing code, or at least as little as possible. Our
solution to these requests is COntrols Multi-purpose Rapid Application Development
(COMRAD).

The first objective of the new tool is to provide a drag-and-drop development environment
using already available widgets, connected to the Control System via CMW. Later, a
better integration with the Control System will be provided with services such as device
discovery, as well as new components inspired by AscBeans. Finally, we aim to fulfil
the frequently expressed need of being able to evolve expert prototypes into operational

17.2 Generic Applications 127

applications [33]. Therefore, it should be possible for COMRAD prototype applications to
be converted into regular PyQt applications, thus unleashing the full power of PyQt.

To save time and resources, COMRAD is based on a pre-existing solution. From the particle
accelerator community, PyDM from Stanford Linear Accelerator Center (SLAC) [47] and
Taurus from the TANGO collaboration [44] were evaluated against the requirements.
PyDM was selected for several technical reasons, including having a newer, smaller code-
base written in Python 3 and being PyQt 5 ready. On top of PyDM, a CERN-specific layer
provides integration with the Control System through PyJAPC, in-house widgets, as well
as the pre-configuration of the tool and its widgets. BE-CO is collaborating with SLAC by
contributing to the stability of the core PyDM product with bug-fixes. CERN-developed
features could also be upstreamed, if relevant to the wider community. For performing the
drag-and-drop design of the GUIs, we rely on the de-facto tool, Qt Designer, as shown in
figure 17.8.

Figure 17.8: COMRAD development environment

17.2 Generic Applications

Accelerators are complex to operate and require many high-level applications. However,
thanks to the standardisation done at the Control System-level (device-property model,
timing selectors, etc.), the BE-CO group is able to provide generic applications that fulfil
many control and acquisition use cases. In addition, the group has to provide a means of
launching applications and managing them, taking into account the multiplexed nature of
the accelerators.

128 Chapter 17. User Interfaces and Tools

17.2.1 Working Sets, Knobs and Function Editor
For the smaller accelerators, the operators prefer to interact with the control devices
displayed as structured lists and tables, a WorkingSet. This allows them to look at part of
their machine in one glance and to open control applications easily. Unfortunately, this
approach cannot be applied to large accelerators such as the LHC, due to the number of
devices.

A WorkingSet is made of a number of independent tables. Each table (device group)
contains a number of devices, for which key parameters are displayed. The list of key
parameters and their position in the table are configured in the InCA database.

The WorkingSets are based on AscBeans, and as explained in section 17.1.2, the AscBeans
set their background colour depending on the status of the parameter. This allows operators
to immediately identify potential issues. Figure 17.9 depicts a WorkingSet with five
device groups and their parameters. Settings diverging from the reference value and
acquisitions deviating from their control value are displayed in orange (warning) and red
(error) respectively. Inactive parameters are displayed in white, and green indicates a
healthy device or parameter.

Figure 17.9: WorkingSet showing PS beam extraction devices for the TOF timing user

While the WorkingSets are mainly used for monitoring, they still facilitate a few a control
actions and bulk operations, such as setting all of the devices to a given value, or switching

17.2 Generic Applications 129

them off. In addition, from the WorkingSets, a set of applications for editing the values
can be launched, already pre-configured with the selected device and timing context. The
list of available applications depends on the class of the selected device. Two of these
applications, the knobs and the Function Editor, are widely used to control scalar values
and functions of time respectively.

A knob is opened by double-clicking on a device in a WorkingSet. Figure 17.10 shows
three knobs for different device classes, the last two knobs control local timings, the first
of which displays the main page and the other the second page.

Figure 17.10: Three knobs to control a function generator and two local timings

Similarly to the WorkingSets, the knobs configure themselves automatically, according to
the device class and the pre-configured layout, stored in the InCA database. As the knobs
are also implemented using AscBeans, the rendering of the individual parameters is set in
function of the value type (e.g. continuous numeric values are rendered as a wheel switch,
whereas an enumerated value uses a combo box (see figure 17.2).

For the parameters representing functions over time, there is another generic application
called the Function Editor. It can be launched from the WorkingSets whenever the selected
device has one or more parameters of type function or function list13. The Function
Editor allows basic function editing (adding points, removing points), plus more advanced
features such as inserting mathematical sub-functions to a curve. To facilitate the work,
the Function Editor can display several functions from different devices at the same time.
Figure 17.11 depicts a Function Editor with data coming from four different devices.

As already mentioned, these generic applications are based on AscBeans and are AscBeans
themselves. Therefore all of the tooling and diagnostics available from the contextual

13A function list is an ordered list of functions, where the continuity between adjacent functions is
guaranteed.

130 Chapter 17. User Interfaces and Tools

Figure 17.11: Function Editor, open with three acquired parameters and the programmed
function of a PS power converter

menu are also accessible and an application developer can embed WorkingSets, knobs and
Function Editors in any application.

Operating the PS complex accelerators using mainly WorkingSets and knobs has been
possible since the 90s. The first implementation was in C++ and X-motif, but was re-
implemented in Java Swing in the early 2000s. Since the graphical design was completed,
the Control System’s infrastructure has evolved and more data types, such as 2D arrays,
are now supported. One of the upcoming challenges is to display these new types in a
user-friendly way. In the recent years, low-level FESA classes have become more complex,
and it is becoming difficult to display all of the available parameters in a 2D table.

17.2.2 LSA Application Suite
Another generic application is the LSA Application Suite, a single GUI that gathers
together several tools, which used to be independent. The suite provides the means to trim,
copy, compare and regenerate parameter settings and clone and map cycles. In addition, it

17.2 Generic Applications 131

can be used to configure knob and Working Set layouts and device groups that are used in
other applications. Figure 15.1 depicts the setting Management tab in the LSA Application
Suite.

Figure 17.12 shows the knob layout configuration tab. The reason to group these different
panels into a single application is to provide a more integrated user experience. With
the LSA Application Suite, the user does not have to launch many separate applications,
and configure them individually with the same pieces of information such as accelerator,
context type, cycles etc. each time. Nevertheless, since each accelerator has its specificities
in terms of operations, the suite itself must be highly configurable in order to satisfy OP
requirements.

Figure 17.12: LSA Application Suite with the knob layout configuration panel

More applications should be integrated into the LSA Application Suite, such as the context
management application and the parameter configuration tool. However, since the app
suite is written in Swing and, in 2019, the future of the latter is unclear, development is
currently on hold.

17.2.3 Common Console Manager
The Common Console Manager (CCM) is the operator’s entry point to all of the controls
applications. The CCM offers a user-specific, multi-level menu bar from which the
operators launch their GUIs. The configuration of the menus is based on an Operational
Configuration (OPConfig) stored in the CCDB (see section 20.1). When logging on using
a recognised service account, the appropriate configuration is loaded, with all of the menus
and applications preconfigured for that team. Figure 17.13 shows the CCM menu bar for
the LHCOP operational configuration.

132 Chapter 17. User Interfaces and Tools

Figure 17.13: CCM menu bar for LHCOP

The CCM is also context-aware, and, for applications supporting timing contexts, the CCM
will manage the application windows according to the context selection. For example, if
the first context is CPS.USER.SFTPRO, and the operator switches to another context (e.g.
CPS.USER.LHC), the CCM will minimise all windows of all applications using the first
context, and restore the windows for all applications open in the second context.

The CCM communicates with the applications that it launches using the Shared Registry
(SHREG), a small Java server storing structured key values, giving the timing context,
selected device names, etc.

The first implementation of the CCM was also in X-motif, but a renovation project was
launched in the early 2000s in order to migrate it to Java Swing. Even though the current
implementation is in Java, since the CCM runs on several platforms (Windows, Linux),
it requires native code to interact with each platform’s window manager. In addition, the
association between a window appearing on a screen and the owning application is based
on the window title. These two mechanisms make the CCM application management quite
fragile and could be improved.

18. High-Level Development Tools

A large amount of high-level software development is done within the group, facilitated
by a suite of high-level development tools. For the IDE, the policy is relatively lenient,
with a several different products being used, including Eclipse and IntelliJ. On the other
hand, the development workflow, i.e. how to build, release, deploy and version code,
should be as homogeneous as possible, within a given technology. Indeed, the different
development teams should not have to consider these aspects for every new project and
duplication of effort should be avoided whenever possible. The BE-CO group provides
solutions implementing industry’s best practices and relying on third-party products.

18.1 Best Practices
To ensure maintainability and high availability of the Control System we strive to follow
software development best practices from industry. The process elements such as ver-
sion control and continuous integration are facilitated using third-party tools, which are
customised to CERN-specific needs.

18.1.1 Version Control
Over the years, the Controls group has used several Version Control Systems (VCSs).
The first tool, Revision Control System (RCS), versioned files individually and locally,
until tools such as Razor, and then SVN, with centralised repositories became the norm.
In 2018, CO embraced the IT department’s strategy to move away from SVN towards
Git, which corresponds to the general trend in industry. The IT department has chosen a
product called GitLab to provide the Git infrastructure. Nevertheless, Git is conceptually
quite different to SVN, with the main challenge being moving from a mono-repository
to many individual repositories. For the group, being able to access the entire code base
is important for maintenance, and therefore the migration to Git requires a review of the

134 Chapter 18. High-Level Development Tools

tooling. Indeed, when planning backward incompatible changes in APIs , a study of their
impact must be carried out in order to understand the consequences on the users.

18.1.2 Continuous Integration
Modern software development teams should use Continuous Integration (CI) with unit and
system tests, in order to minimise the risk of regression bugs. BE-CO has used Atlassian
Bamboo for several years to provide a CI infrastructure. The tool allows each team to define
one or several plans to test the software they produce. Additionally, since the controls stack
relies on several components, the tool provides a plan dependency mechanism, whereby
modifications in a plan triggers the execution of other plans, thus validating the complete
chain.

Following the Long Shutdown 1 (LS1), the group went a step further in its CI by setting
up the Controls Testbed (CTB), in order to validate the next version of the controls stack
(FESA, CMW, timing, etc.). Code changes are validated against several FESA classes, to
ensure that there are no adverse side-effects in other components. Therefore, a seemingly
innocent modification containing a bug, which passes the unit tests, would be caught by
the integration tests performed in the CTB.

The latest evolution of the VCS, with new products such as GitLab, offers new CI solutions.
However, the industry trend is towards open-source products, such as Jenkins. In 2019, the
group is evaluating the two possibilities, in order to rationalise the tools used for CI.

18.2 Build Process
Different build processes have been implemented, depending on the technology, and
specific tools are provided to facilitate their adoption. For Java, the entire process, from
building through to release and deployment, is handled by Common Build Next Generation
(CBNG), while for other technologies, such as Python, only standard third-party tools are
used.

18.2.1 CBNG
CBNG is a CERN-made tool that helps to perform most of the Java development operations,
such as dependency management, integration with VCSs, and building. Historically, there
was no solution available on the market that fitted our needs, and with more than 500 Java
products, it was important to provide an easy-to-use tool for both full-time developers
and operators. Dependency management alone is a very complex subject and justifies the
creation of a tool such as CBNG that fulfils the CERN-specific requirements. In addition,
a centrally managed tool allows global operations such as bug fixes to be performed.

From a user’s point of view, interaction with CBNG happens through a file called
product.xml and a set of commands, which can be invoked either through an IDE,
such as Eclipse, or the command line (e.g. bob build), in the same spirit as one would
use make compile in C++. In the product.xml file, the user describes their product
(name, versions etc.), the dependencies of the product and some information to allow the
generation of a launch script. Thanks to the dependency information, the tool can fetch
the libraries in a recursive manner, implying that it will fetch the dependencies of the

18.2 Build Process 135

dependencies until none remain. Figure 18.1 shows a simplified example of a product
depending on three libraries, with the libraries themselves having dependencies. Note how
quickly the dependency management problem becomes complex, as the product already
uses two different versions of lib4. This kind of situation has to be handled properly by the
CBNG tool.

Figure 18.1: A simple dependency graph with a conflict in transitive dependencies

The BE-CO group has more than a thousand Java components, which are highly inter-
dependent. This is shown on the dependency graph in figure 18.3.

Two other core features of CBNG are building and releasing the product. When building,
the tool will compile the product code, its unit test, and execute the unit tests.

Once the software component is ready to be deployed in operation, the last stage of the
development is called the release. The release process is very similar to the normal build,
except that traceability and reproducibility must be ensured. Indeed, since the piece of
software will be deployed in production, anybody must be able to rebuild it from the
source code, without any specific dependencies on a particular developer or development
environment. Furthermore, in case of problems, it is important to be able to identify the
exact version of the source code which caused the bug. For Java developments, CBNG
integrates a release process, customised to CERN-specific needs. Figure 18.2 depicts a
simplified version of the release process.

The reproducibility of the release is ensured thanks to tagging the source code with
the version number and the use of a release server, which isolates the build from any
specific development environment and relies only on the tagged sources, without any local
dependencies. The end result is stored in the so-called Artifactory.

The deployment phase consists of taking released software from the Artifactory and
transferring it to the computer on which it will be executed. In 2019, all of the processes
are run bare-metal, directly on the computers. However, studies are ongoing to evaluate the
possibility of using containers and clustering technologies. The execution of the processes

136 Chapter 18. High-Level Development Tools

are performed by an in-house product called wreboot. The process’ health is monitored by
COSMOS, as explained in chapter 19.

Figure 18.2: Simplified release process

In 2019, many third-party build tools are available on the market. That means, for
newcomers, CBNG is seen as a CERN-specific non-standard approach. In the future
CBNG will evolve towards Gradle [26]. However, with its latest release (V3), CBNG has
become much closer to pure Gradle and users of the latter can now profit from CBNG
integration thanks to a plug-in.

18.2.2 Python Build Tools
In 2019, the Python development infrastructure is still embryonic. A Python Package
Index (PyPI) repository, to store CERN-specific Python artefacts, is in place. It proxies
the global repository, holding the software developed and shared by the Python commu-
nity. A BE-CO Python distribution is also available on all development and operational
computers. It is based on the LHC Computing Grid (LCG)’s Python 3.6 distribution,
packaged by the Experimental Physics (EP) department. In addition, we use the virtual
environment mechanism to select the Python interpreter and the libraries to be used in a
given development.

18.2 Build Process 137

Figure 18.3: Dependency graph between BE-CO’s Java components

VI

19 Monitoring, Testing and Diagnostics . . 139
19.1 COSMOS
19.2 Low-level Test Tools
19.3 Tracing

20 Configuration . 145
20.1 Controls Configuration Database
20.2 Controls Configuration Data Editor
20.3 Controls Configuration Data Access API

Transversal
Components

19. Monitoring, Testing and Diagnostics

19.1 COSMOS
As described in previous chapters, the Control System relies on many components and
a substantial infrastructure, which needs to be available 24 hours a day, 7 days a week.
Therefore, the infrastructure needs to be monitored in order to detect any failures and
intervene as soon as possible. The Controls Open-Source Montoring System (COSMOS)
project was launched in 2017, following a review of the different monitoring solutions.
One of the main goals of COSMOS was to consolidate several systems such as Diagnostic
and Monitoring System (DIAMON), LHC Era Monitoring (LEMON), etc. Contrary to
previous solutions, the scope of COSMOS is well-defined and covers only the monitoring
of the technical infrastructure, delegating to the GUI layer the integration of various
services, such as process management, remote reset, etc.

At the heart of the COSMOS project, one finds an open-source product called Icinga2.
Icinga2 is based on a distributed architecture in which the data is processed in the monitored
nodes, rather than in the central server and introduces core concepts such as checks, health
reports, and performance data. The health report, containing a status of the monitored
component, is obtained via checks. Figure 19.1 shows the COSMOS architecture with its
three main parts: sources, COSMOS core and visualisation.

COSMOS uses Collectd agents to gather the OS metrics from the hosts, related devices
(disks, memory, etc.) and network. Collectd makes this information available over the
network to the central server, where the data is stored in a time-series database, InfluxDB.
In parallel, COSMOS uses the Icinga2 check mechanism to gather health reports, related
performance data and thresholds from all hosts and services of the control infrastructure,
using custom or dedicated protocols like IPMI or SNMP. It populates the central database
used by the expert tools such as IcingaWeb, to establish, in real time, the complete

140 Chapter 19. Monitoring, Testing and Diagnostics

Figure 19.1: COSMOS architecture

diagnostic of each component, to configure user alerts, and to provide detailed statistics.
Whenever it is not possible to compute the status of a service from a single Icinga2 check,
or to detect trends, COSMOS uses Prometheus as an intermediate agent. Prometheus then
generates the service status using its functional expression language. Finally, the data is
visualised by the users, thanks to dedicated software, including Grafana or IcingaWeb, as
shown in figure 19.2. Alerts are sent through the standard mechanisms of SMS and email.

Figure 19.2: COSMOS GUIs

Users of COSMOS can contribute to the system by developing their own Grafana dash-
boards and providing custom checks. Checks are pieces of code executed on the monitored
nodes and can be as simple as a few lines of Bash, C or Python. As depicted in figure 19.3,

19.2 Low-level Test Tools 141

checks can be active or passive. An active check is triggered by the central server in
polling mode and pulls metrics from the nodes synchronously. A passive check occurs
when a standalone agent pushes data to the central server asynchronously. In the case
of systems where it is critical to start and stop processes at any moment, passive checks
are recommended. For the same reason, it is suggested to use high-performing languages
such as C or C++ for real-time systems. Indeed, for the BE-CO low-level frameworks, the
interfacing with COSMOS is done with C++ Management Extension (CMX) agents, as
described in the next chapter.

Figure 19.3: COSMOS checks

The first phase of the project focused on delivering the COSMOS hardware and software
infrastructure in order to monitor most of the hosts deployed on the GPN and TN. The
second phase concentrated on the consolidation and extension for advanced requirements
such as volatile configuration, dependencies and relationships, diagnostics, and high-
availability. In addition, it also covers the monitoring of applications such as Java services
and C++ real-time processes. The operational DIAMON GUI will remain in place but will
evolve to use COSMOS as a data source.

19.1.1 CMX
For RT systems, it is particularly important that monitoring does not interfere with control
processes. Nevertheless, metrics and internal states of these processes must be gathered in
order to detect potential issues as soon as possible. In 2013, CMX [25], was developed as
a lightweight means to monitor our RT systems.

Inspired by JMX, CMX offers similar functionality, but with a simpler set of features tar-
geted to our specific needs. CMX provides non-blocking, uni-directional communication
between the monitored process and shared memory, however it only supports numbers and
strings. The equivalent of the JMX MBean is called a component, and by default every
process has one component to gather usual Linux process information such as Process
IDentification number (PID), start-time, etc. Libraries and frameworks can contribute addi-
tional components, for example FESA automatically adds specific components, depending
on the class design. In order to make the library as lightweight as possible and be available
to low-level processes, the CMX APIs are provided in C and C++.

19.2 Low-level Test Tools
When developing or diagnosing a Front-End application, it is very useful to have test tools
that can interface directly with the layer under investigation. We provide tools for the

142 Chapter 19. Monitoring, Testing and Diagnostics

direct access of the three layers present in a Front-End: hardware registers, device drivers
and FESA servers.

19.2.1 Encore/EDGE Test Tool and UAL
encoreconsole allows the debugging of a hardware component through a Command
Line Interface (CLI) that leverages the functionalities of the generic Encore/EDGE library.
In particular, the registering of I/Os, DMA transactions, waiting for interrupts and a whole
sequencing facility. Furthermore, re-running of previous simulated data is possible using
the hardware module register naming, taken from the hardware description (see chapter 10).

In addition, a separate tool that bypasses the device driver installation, is provided: the
Unified Access Library (UAL) and its Python binding, PyUAL. While EDGE generates
production-quality drivers and libraries, UAL is meant for quick hardware testing in
non-production context.

UAL is a simple library that maps the register map of a hardware device into user space,
abstracting the host bus (PCI or VME) into a simple API, also exposed through Python
bindings. The goal is to ease the development of test/validation programs for hardware
during the design and production phase, and to streamline the creation of diagnostic tools
for non-production purposes only.

The interrelation of components and artefacts is depicted in figure 19.4.

Figure 19.4: Components of EDGE and PyUAL for testing

19.2 Low-level Test Tools 143

19.2.2 FESA Navigator
Moving one level up in the controls stack, the FESA Navigator gives low-level, expert
access to the FESA processes. The Navigator is the main toolbox used by the FESA class
developer and provides raw access to all properties with a set of viewers supporting most
of the data types, history, tracing and even real-time profiling, as shown in figure 19.5. In
addition, users have the possibility to configure the panels in order to help visualise the
properties of complex classes and save this layout for future use.

The Navigator can be used by experts while developing their classes, as well as during
operation for low-level diagnostics. For that reason, it needs to obtain static information
such as class design and device instances either from the FESA XML files or by connecting
to the CCDB to retrieve operational data. Since the Navigator is a diagnostic tool, it should
interface at the lowest possible level with the running FESA classes, without interference
from the high-level layers. Therefore to retrieve runtime information it connects directly to
the FESA servers through CMW-RDA3.

The FESA Navigator was developed at the same time as the first version of FESA in
the early 2000s and since then has evolved significantly. It is based on the technologies
available at that time, including Java Swing for the graphical part. In the future, it is
planned to reimplement this tool, taking into account the two decades of experience and
other available technologies such as PyQt.

Figure 19.5: FESA Navigator with profiling panel

144 Chapter 19. Monitoring, Testing and Diagnostics

19.3 Tracing
One of the most basic methods of diagnosing software is by adding tracing information.
This approach is simple and efficient. Nevertheless, in a highly distributed system, such
as the Control System, it can quickly become a challenge as the information is stored in
many files from different origins on different computers. In order to ease the diagnostic
work for everybody involved in software development (operations, equipment groups, etc.),
BE-CO provides a tracing infrastructure with central storage and extraction tools. The
tracing service gathers information from many data sources, mainly syslogs, CMW loggers
including FESA and FGC servers, and Java applications.

The tracing architecture is comprised of many third-party, open-source components, as
depicted in figure 19.6. At the centre of this architecture is a Kafka broker and an
Elasticsearch cluster. Traces stored in files are injected into the service using Logstash,
before being sent to the Kafka broker, while traces from CMW loggers are sent directly. A
set of processors implementing a pull paradigm, take data from the broker, apply filters,
and enhance the data before sending it to Elasticsearch. Kibana and Grafana are used to
extract and post-process the traces.

Figure 19.6: Tracing architecture

For Elasticsearch and Kibana, we rely on the services of the IT department, who have
provided an up-to-date stack with high-availability, redundancy, security and expert support
on a cluster on the TN.

Using this architecture with a Kafka broker, opens the door to future integration with
NXCALS (see section 15.3), as a secondary data store. This would provide the means to
analyse tracing data, together with accelerator data already stored in NXCALS.

This new service was deployed for the start of LS2, replacing an obsolete system and
resolving several shortcomings relating to reliability, scalability, and maintainability.

20. Configuration

As described in the previous chapters, the Control System is made of many components
that are generic and can be configured according to their context. In order to avoid having
dispersed configuration strategies, including different technical implementations, such
as text files, local databases etc. it was decided to put in place a Controls Configuration
Service (CCS) [9]. The CCS aims to avoid redundancy and duplication of configuration
data, as far as possible. It is composed of three main areas, the Controls Configuration
Database (CCDB), the Controls Configuration Data Editor (CCDE) and various APIs
including the Controls Configuration Data Access (CCDA).

20.1 Controls Configuration Database
At the centre of the CCS lies a relational database, the Controls Configuration Database
(CCDB). Using a relational database brings many advantages. In addition to centralising
data, which reduces redundancy and duplication of configuration data, it prevents inconsis-
tencies and incoherencies between the configuration of components [65]. It also provides
easy data management with features such as access controls, history, etc. Finally, the
CCDB makes data available to any user and component of the Control System that needs
it.

However, some components, such as fixed displays (see section 17.1.3), do not rely on the
CCDB to store their configuration data. Sometimes this choice was deliberate, in order to
produce a standalone solution. Nevertheless, these cases need to be carefully managed in
order to avoid problems such as incoherent configurations. A typical case is when a device
name is used as a configuration identifier in a file and it is centrally changed in the CCDB.
The configuration file becomes out-of-date and the application using it will fail.

The CCDB models most of the core concepts and services found in the Control System,

146 Chapter 20. Configuration

along with the relationships between them. For example, devices and their relationships are
described in the database, allowing a better understanding of how elements in the Control
System work together. In 2019, the Control System is represented in the CCDB using an
estimated six-hundred and fifty domain entities. There is a high level of normalisation at
the level of the database, which explains the high number of tables. The model covers the
lowest level details of the Control System, such as the hardware module description (see
section 12.1), to high level elements, such as the configuration of the menu items in the
CCM.

The CCS has existed for over 30 years [16] and is constantly evolving due to changing
requirements in the Control System and technological advances. This requires a substantial
effort in order to control the technical debt and limit unnecessary complexity, whilst
ensuring overall system stability [11, 46]. In 2019, the CCDB is based on an Oracle
database cluster (acccon) which offers a stable and reliable service.

The two next chapters cover the recommended means of accessing data in the CCDB, which
are the CCDE and the CCDA API. These interfaces hide the database implementation
details and ease the evolution of the database model. Nevertheless, several users still have
satellite accounts, allowing direct SQL access to views and the ability to call PL/SQL
packages containing service-specific business logic.

20.2 Controls Configuration Data Editor
The CCDE is the most intuitive, non-programmatic way to access and edit configuration
data, thanks to its interactive web interface. It is comprised of several modules, each
focusing on an aspect of configuration. The modules are related and it is easy to navigate
seamlessly between them, thus hiding complexity and implementation details from the user.
For example, from the FESA instantiation editor, the user can easily access the front-end
start-up sequence editor.

The main challenge when designing such a complex GUI is usability. Indeed, the many
concepts modelled in the database need to be exposed, together with the relationships
between them in a integrated way. At the same time, the different workflows of the diverse
user community, need to be taken into account in order to facilitate the work of the users.
This topic of usability and how it is applied in the design of the CCDE is further explored
in [12].

The CCDE is based on the ACW stack (see section 17.1.4). As such, the back-end is written
in Java and the main framework used on the client-side is Angular JS. To guarantee high-
availability, the back-end is deployed on a cluster of two machines and is load-balanced
using HAProxy. This architecture is depicted in figure 20.1.

Compared to the previous APEX-based solution [64], this new architecture has many
advantages. It is 3-tier and therefore offers good decoupling between the client-side and
the database, and since there is a Java server available, interaction with other systems is
possible e.g. calling a Python script to generate files. Furthermore, it relies on open-source
components and reduces vendor lock-in with Oracle.

20.3 Controls Configuration Data Access API 147

Figure 20.1: CCDE architecture

20.3 Controls Configuration Data Access API
Providing user-friendly GUIs is an absolute necessity, but in an environment such as CERN
it is not sufficient, since very often users require programmatic access to data. The Controls
Configuration Data Access (CCDA) API fulfils this need.

Developed as part of the LS2 programme to replace an obsolete service, the so-called
configdb-dirservice, the CCDA provides access to the configuration data through a
REpresentational State Transfer (REST) API. This was also a good opportunity to review
and remove obsolete configuration data used by deprecated frameworks such as GM.

REST has been chosen, as it is a language agnostic way to expose an API. In the past, the
recommended approach was to use RMI, which is Java specific, but with the increase in
popularity of other languages, such as Python, an API with the ability to work with several
languages was required. The CCDA relies on an architecture similar to the one used for
the CCDE, (see figure 20.2), which is based on a Java server running on two separate
computers, load-balanced using HAProxy.

To improve the user-friendliness of the API, a Java wrapper is also available to hide the
low-level implementation details of the REST endpoints. The Java wrapper offers easy
access to domain objects representing the core concepts of the controls configuration. In
2019, there are plans to provide wrappers in other languages, such as C++ or Python. In
addition, the REST endpoints can be used directly and wrappers developed by the user
community might emerge.

Like its predecessor, the first version of the CCDA, released in 2019, is read-only. How-
ever, there are plans to provide read-write access in order to allow the development of

148 Chapter 20. Configuration

Figure 20.2: CCDA architecture

more powerful tooling and better integration with other systems. Read-write access will
enable complex workflows to be modelled, which would require interaction with several
components.

VII

21 Layout . 150

22 Organising Accelerator Operation . . 153
22.1 AFT
22.2 ASM

Data
Management

21. Layout

The Layout Database and its initial tools were originally developed in 2003 as a joint
collaboration between the Controls group and the Installation and Commissioning group,
as a tool for planning the installation of beam line components in the LHC [56].

One of the key concepts of the Layout Database is that hardware components are described
as Functional Positions (FPs). The combined functional position data from more than 20
equipment groups forms a centralised, integrated, cross-domain model of the physical
installations in the accelerator complex. By centralising and sharing data that would
otherwise be stored in dispersed, private, domain-specific databases, the equipment groups
profit from cross-domain maintenance i.e. automatic updates induced by other group’s
actions, as well as a coherent, consolidated dataset describing the complete architecture of
all accelerators, with no redundancy.

Over the course of its lifetime, the purpose, geographical scope and domain scope of the
Layout Service has expanded enormously; from just managing LHC beam-line elements,
to potentially managing any functional position that has an impact on accelerator operation
at CERN [55]. The Layout database has been used for a variety of purposes over time
including:

• The automatic generation of MAD X sequence files for optic simulations;
• To document the complex LHC electrical circuits;
• To provide information to the transport team so that they can plan and define

installation/maintenance path/trajectory of each equipment component;
• To provide links to installation planning and mounting/dismounting scenarios of a

component;
• To store data for hardware testing and commissioning, in particular instrumentation

for cryogenics [27, 61], vacuum and protection;
• To store data on controls objects such as electronics for the controls of the cryogenics.

151

A Functional Position (FP) specifies the type and name(s) of component, along with the
size and the position of the space it occupies in the accelerator. Figure 21.1 shows how
magnets are represented as Functional Positions in the Layout Database.

Figure 21.1: Magnet components described as Functional Positions

Functional Positions are defined as part of an Assembly Breakdown Structure (ABS). For
example: An instrument FP is defined as the child of a magnet FP, as shown in figure 21.2.
The position of the instrument is defined as an offset with respect to the start position of
the magnet. The exact position of the instrument in the accelerator is then calculated. If
the position of the magnet changes, the position of the instrument is updated automatically.

Figure 21.2: Instrumentation components described as Functional Positions within an
assembly

As well as being part of one or more Assembly Breakdown Structures, individual Func-
tional Positions can also be logically linked together in other ways, for example, to
represent cabling or other types of connections.

The Layout database is also a hub linked to approximately 40 other data repositories, such
as Electronic Document Management System (EDMS) for documents, InforEAM for
asset management, as well as many domain-specific databases including the Cablotheque
for cabling data, Sensorbase for instrument calibrations, Norma for magnet parameters
and AlimDB for power converters, among others. Using these database links, the Layout
web interface displays layout data aggregated with data from many other different sources
to give a full picture of the installation.

The original architecture of the Layout Service used an Oracle database with a .NET web
interface for browsing, as well as a set of Oracle Forms and Apex applications for editing
specific subsets of data. The database schema applied an LHC-centric, generic data model,
where attributes are separated from objects and stored in a separate table. This allows a

152 Chapter 21. Layout

large degree of flexibility when adding new properties, but has the clear disadvantage that it
is not possible to implement data integrity checks on the values. Therefore, data entry and
editing had to be performed by a small team of experts within the Layout Service. Long-
term, this approach was not scalable and it became essential to devolve responsibility for
data management to the end-users. In order to do this, the database model was consolidated
and redesigned so that the data can be safeguarded by applying a detailed authorisation
scheme and implementing checks which enforce domain-specific business rules, whilst at
the same time allowing flexibility, modularity and extensibility. Intensive development of
the new Layout Database and its new modern Graphical User Interfaces began in 2014. It
comprises of a new Oracle Database and a unified read-write web interface built using the
ACW framework on the common BE-CO web technology stack.

The original model was limited to archived snapshots of data at specific moments in time,
plus a STUDY version which showed the current state of the installation. The new model
is time-oriented; functionality required to support the management of past, current and
future layouts. This allows beam physicists and operators to simulate and refine possible
future machine layouts in the conext of projects such as LHC Injector Upgrade (LIU),
High-Luminosity Large Hadron Collider (HL-LHC), and Future Circular Collider (FCC).
In addition equipment groups are able to communicate their changes in advance, thus
allowing a smoother distribution of Layout activities over time and less labour intensive
work at the end of stop periods. However, this new functionality is complex and pushes
the current capabilities of Oracle’s referential integrity management system to its limits.

22. Organising Accelerator Operation

Several aspects of the accelerator’s operation have to be organised, such as the schedule,
controls interventions, and follow-up of issues encountered and how they affect the avail-
ability of the machines. BE-CO provides two tools, Accelerator Fault Tracking (AFT) and
Accelerator Schedule Management (ASM) to assist with these tasks.

22.1 AFT
One of the prevailing goals of the Accelerator and Technology Sector is to optimise the
efficiency of the accelerators in terms of protons produced and luminosity delivered to the
experiments. Therefore, it is important to be able to identify the root causes of downtime
over time, in order to in-turn, prioritise the corresponding consolidation work [4, 52].

The Accelerator Fault Tracking (AFT) initiative aims to provide the infrastructure necessary
to consistently and coherently capture, persist, and make available accelerator fault data
for further analysis. AFT serves as the main input to the work of CERN’s Availability
Working Group (AWG), who are tasked with providing in-depth analysis and reports of
the availability of CERN’s accelerators, and highlighting re-occurring problem areas to be
investigated further.

The central concept of AFT is Faults, which are unplanned periods of unavailability to
provide beams for physics. This may be caused by failures of physical equipment, software,
human error, or naturally occurring effects such as beam losses (e.g. LHC Unidentified
Falling Objects (UFOs)).

AFT provides various means to structure the data. Faults are categorised in systems
according to their cause (e.g. Cryogenics, Vacuum, Accelerator Controls etc.). Systems
are not tied to CERN administrative units, which are subject to change over time. Two or

154 Chapter 22. Organising Accelerator Operation

more faults can be linked using fault relations, which also describe the nature of the link
(e.g. parent-child, "same as", "similar to", "related to").

Based on the fault data, AFT computes Availability and Downtime. These complementary
notions measure the time that a system was available (or unavailable). This can be seen
from different perspectives according to the wishes of the AFT user. For example, a
system expert may be interested in "raw" system unavailability, whereas as people planning
consolidation may be interested in "root cause" unavailability, taking into account fault
relations such as "parent-child" to uncover dependencies and target the consolidation of
root causes rather than symptoms.

Faults are registered by the operators of the different accelerators via the ELogbook
application. Behind the scenes, the fault is directly registered in AFT. Once a week, the
Availability Working Group (AWG)’s members and Machine Supervisors meet, together
with an AFT expert, to review fault assignments and data completeness and correctness.
Following this review, all faults are marked as being "Reviewed by AWG". When a fault
is assigned to a system, the corresponding expert is notified and is able to update and
complete certain fault attributes, using the AFT Web application. If they agree with the
fault assignment, they can mark the fault as being "Reviewed by Expert", otherwise they
can request that certain controlled attributes (system assignment, start and end times)
are modified by the AWG. A summary of the accelerator performance, based on AFT,
is presented at daily and weekly operational review meetings, as well as more in-depth
reports following each accelerator Technical Stop, and at the end of the annual physics run.

AFT is comprised of a database, Web application and underlying APIs and processes to
store, manage and analyse all data related to faults. AFT is based on the common ACW
technology stack used in BE-CO for Web application development (see section 17.1.4).
Figure 22.1 shows an AFT dashboard for the LHC, including the overall availability for
the selected time period, and the so-called "LHC Cardiogram".

The AFT project was launched at the end of February 2014, and delivered a production
ready system at the start of 2015, to capture LHC fault data from an operational perspective.
Following its success during 2015/16, the system was extended to cover the complete
Injector Complex in 2017. In addition, further iterations of the AFT system have provided
an increasing amount of functionality to support fault management, follow-up by equipment
groups (in addition to the operations teams) and analysis by all users. In 2019, development
continued on many aspects, including integration with other systems, such as Accelerator
Schedule Management (ASM) (see section 22.2) and Layout (see chapter 21), providing
additional attributes and improved reporting and analysis functionality.

In the future, further integration with other systems, such as LASER (see section 15.7),
Logging (see section 15.3), and the CCS (see chapter 20), is foreseen. Other possible
improvements include active data analysis, predictive failure analysis using advanced
algorithms and/or Machine Learning, looking for failure patterns, and combining fault data
with logged data, where applicable, to detect failures.

22.2 ASM 155

Figure 22.1: AFT dashboard for the LHC

22.2 ASM
Operating CERN’s accelerator complex requires careful forward planning and synchronised
scheduling of common events across the machines, such as Technical Stops, MD’s and
special physics runs. The schedules are of interest to many people, helping them to plan
and organise their work and perform different data analyses. Therefore, this data should
be easily accessible, both interactively and programmatically. The ASM system aims to
address these topics, by allowing users to centralise the definition of schedules and events
assigned to those schedules.

ASM provides the infrastructure necessary to define, manage and publish schedule data in
a generic way. It allows future work to be planned according to scheduled events, in a way
that entries remain valid, even if the actual dates of the scheduled events are changed e.g.
a plan to upgrade a FESA device class during a technical stop remains valid, even if the
date of the technical stop changes. The credibility of the application is fully dependent on
the correctness of the schedule data, which requires regular data entry and updates by the
responsible person.

Schedules and events are configured in a data driven manner, making it relatively simple to
add support to manage different types of schedules. As depicted in figure 22.2, schedules
and events are managed and consulted using the ASM Web application which is based on
the common ACW technology stack (see section 17.1.4).

A REST API also provides programmatic access to the schedule data, enabling ASM to
be easily used as input to other systems, such as AFT (see section 22.1), or potentially
Logging (see section 15.3). Typical use cases could be to display LHC faults between TS1
and TS2 in 2016, or to extract logged BPM data during the LHC MD block 1 in 2018.

The ASM project was launched in February 2017, initially focusing on yearly accelerator

156 Chapter 22. Organising Accelerator Operation

Figure 22.2: PS Machine Development schedule for week 22 of 2018

schedules for the Injector complex and LHC. Shortly afterwards, the system was extended
to provide integrated MD management, as well as the registration, approval and follow-up
of Controls changes.

VIII

23 OASIS . 158

24 Timing . 162
24.1 Central Timing
24.2 Distributed Timing

Control System
Applications

23. OASIS

Operators and system experts need to acquire low-level analogue signals coming from
the different pieces of equipment. The sources of the signals are scattered around the
accelerators, but the users need to easily correlate them, regardless of their relative distances.
For example, in the PS complex, it is not unusual to have hundreds of metres between
sources that need to be observed together. To cover this need, the OASIS project was
launched in the early 2000s [21, 22], with the aim to provide a new analogue signal
acquisition infrastructure for the LHC, and to replace the existing system in the other
accelerators. The core concept of OASIS is the virtual oscilloscope, through which we
can display signals acquired in different locations on the same oscilloscope screen, see
figure 23.1, whilst guaranteeing a time coherency. The time coherency is ensured thanks
to a single central trigger generation system. The pulses are then distributed via direct
cables between the trigger generator and the digitisers, installed around the accelerators.
However, since there are thousands of signals to be observed, and it would be economically
prohibitive to install a digitiser for every signal, therefore OASIS uses signal multiplexing
wherever possible. A switch matrix accepting a large number of input signals is installed
before a group of digitisers, allowing the users to select which signal to observe at a
given moment. The number of signals that can be observed is still limited to the quantity
of digitisers, but overall the amount of available signals is higher. Finally, to complete
the virtual oscilloscope illusion, OASIS has to manage the various digitiser settings in a
coherent way to guarantee that what is displayed makes sense. For example, if one changes
the trigger delay in the virtual oscilloscope, the appropriate delay values have to be sent to
the different digitisers.

For its implementation OASIS relies as much as possible on the BE-CO building blocks. In
terms of hardware, we strive to stay in-line with the supported BE-CO front-end platforms,
as described in chapter 5. The first generation of OASIS hardware reused the existing VXI
crates and introduced the CompactPCI format. With the introduction of industrial PCs

159

Figure 23.1: Virtual oscilloscope showing the transfer for PS Booster to PS

in the Control System and their PCI and PCIe buses, new generations of digitisers were
integrated into the system and provided an opportunity to eradicate VXI. Furthermore,
a VME solution was developed for low-bandwidth, low cost installations. In the future,
the CompactPCI platform will be phased out and new platforms such as mTCA will be
supported.

The FEC software to perform the RT control of the hardware modules e.g. digitisers,
signal matrices and trigger generators, also relies on standard BE-CO solutions, namely
FESA (see section 11.2). The device-property interfaces for the different hardware types
have been specified and documented to allow equipment groups to integrate new types
of digitisers, which are not yet supported, into OASIS’s front-end layer [20]. Typical
front-end interfaces expose settings to be controlled by the higher layers. However, in the
case of OASIS, in order to easily support various types of hardware, the interface also
exposes the capabilities of the underlying piece of hardware. For example, the maximum
number of samples depends on the on-board memory and other parameters, such as the
timebase etc. Therefore, the corresponding property will publish the current number of
samples, as well as the maximum number of samples available with the current set-up.

In the middle tier, the OASIS server, implemented in Java, is in charge of the management
of resources and settings. The resources are the digitisers and signal matrices that have to
be assigned to the different clients, depending on several criteria, such as their location and
user name, in order to maximise the number of signals that can be observed at a given time.

160 Chapter 23. OASIS

To perform the signal routing, the server relies on device relationships stored in the CCDB
(see section 20.1). Figure 23.2 depicts the front-end interfaces with their relationships.
The virtual oscilloscope illusion is obtained thanks to the OASIS setting management. In a
given virtual oscilloscope, the different signals might be acquired by hardware modules
with different characteristics. As well as ensuring that compatible settings are used for
the digitalisation, the middle tier also has to compute the intersection of the capabilities
of the different digitisers. For example, on a virtual oscilloscope with two signals, one
digitiser might have twice the available pre-trigger memory than the other and the OASIS
server has to limit the maximum delay that will be compatible with the two modules. The
communication with the GUI is based on RMI and JMS, as for any systems developed in
the early 2000s.

Figure 23.2: OASIS front-end model

At the top of the stack, there is a generic viewer offering three 16-channel virtual oscil-
loscopes, allowing users to connect any signals available in OASIS. There is also a Java
client library available for users to develop their own specific graphical clients, such as the
tomoscope application shown in figure 23.3. The generic viewer was developed in Java
using Swing and particular attention was paid to ensure the high refresh rate required for
display modes such as scrolling.

The biggest problem for the future extension of OASIS is the way that triggers are dis-
tributed. Indeed, whenever a new installation is made, cables, potentially hundreds of
metres long, have to be pulled from the trigger generation crate to the new digitisers. For
large machines such as LHC and SPS, this is often impractical. Therefore, signals acquired
in different points of the accelerators cannot be displayed on the same oscilloscopes due to
the lack of coherent triggering. The future plan is to deploy a White Rabbit network to
distribute the triggers and to rely on the WRTD specification, as described in section 5.6.
The challenge with this new distribution to ensure that the delay, which needs to be added
to a trigger, is compatible with the hardware, taking into account the network latency and
the memory available in the digitisers to store pre-trigger samples at the required sampling
frequency.

161

Figure 23.3: Tomoscope application relying on OASIS infrastructure to acquire pickup
signals

24. Timing

As introduced in chapter 4, the Timing system is at the core of the accelerator controls. Fig-
ure 24.1 depicts its main components. The Central Timing (CT) takes Beam Coordination
Diagrams (BCDs) from the operators and, taking into account the external condition inputs,
schedules the cycles for the different accelerators accordingly. Events and contextual
information, known as the Telegram, are sent on the GMT network and received by the
Central Timing Receivers (CTRs) that in turn decode the contextual information, generate
interrupts and pulses, as well as derived events resynchronised with accelerator clocks,
such as the beam revolution clock.

Figure 24.1: Overall architecture of the Timing system

24.1 Central Timing 163

24.1 Central Timing
The Central Timing Front End software is based on five FESA classes (see section 11.2).
These five classes communicate with each other thanks to FESA association and are
deployed on the central timing FEC as a single FESA deploy-unit.

One FESA class is in charge of collecting external condition information. External
conditions are used to communicate problems with critical devices such as power converters
etc. or beam requests/inhibits to the central timing. There are two types of input: hardware
and software. For the hardware inputs, there is a network of PLCs that collect the hardware
conditions and the FESA class reads them using SILECS (see section 12.2). The software
conditions are obtained directly by subscribing to the device using CMW.

Three other FESA classes provide the central event control (delay, enable/disable, etc.)
and the last FESA class implements the central timing scheduling logic, thanks to the
information provided by the other classes and the BCD programmed by the operators.

Once the scheduling is complete, messages are distributed using one Multi-Tasking Timing
(MTT) generator [1] per timing domain (see section 4.3) after resynchronisation with the
Global Positioning System (GPS) signals. As shown in figure 24.2, a GPS receiver is used
to generate three stable synchronisation signals: a Pulse-Per-Second (PPS), a 40MHz clock,
and a 1.2-second-period signal. The latter, known as the basic period, is the heartbeat of
the accelerator complex.

Figure 24.2: Central Timing synchronisation signals

The main GUI, the Sequence Editor, is used by the accelerator operators to program the
beams to be played, along with the spare beams. This application was developed in Java
Swing and communicates with a central Java server using RMI. Figure 24.3 shows the
BCD editor with the supercycles from LEIR to SPS with the normal beams in green and
the spare beams in yellow.

24.2 Distributed Timing
The timing distribution, called the GMT network, is based on the RS485 standard and
encodes the messages using Manchester code. This technology was deployed more than
30 years ago and has very limited bandwidth, allowing the central timing to send only
eight 32-bit frames per millisecond. Due to this limitation, only one timing domain can
be handled by a single MTT generator and therefore the central timing front-end contains
several modules.

When the GMT signal needs to be transported over a long distance, a conversion to optical
signals is performed using modules designed specifically for the GMT distribution. This

164 Chapter 24. Timing

Figure 24.3: BCD editor

is typically used between CERN sites (Meyrin, Prevessin) and SPS and LHC points.
Inside a technical building, the optical signal is converted back into an electrical signal
and distributed over a copper network with GMT repeaters and fan-outs when required.
Like the MTT generator, the GMT repeaters are VME modules and VME RTMs (see
section 5.3.1).

At the receiving end of the network, the CTRs recover the clock [3] and decode the signals
in order to produce equipment-specific events, the so-called Local Timing events (LTIM).
The events can be electrical pulses or software interrupts. The CTRs are very flexible and
can produce a wide variety of local timing, from a simple repetition of a central timing
event, to a complex scheme to produce bursts of pulses, synchronised with the revolution
frequency of the accelerator. The most common configuration is the repetition of a central
timing event after resynchronisation with an accelerator clock. This scheme performs a
shift from an absolute time domain to beam-related time domain. CTRs are available in all
of the hardware formats (see chapter 5) supported by BE-CO.

Distributed timing is integrated into FESA via the timing event source, which relies upon
the timdt library. Therefore a FESA developer is able to use a timing event as a logical event,
which triggers RT actions (see section 11.2). In addition, the timdt library provides access
to all of the contextual information related to an event and is typically used to de-multiplex
settings and acquisition data (see chapter 4). There is a need for high-level applications to
retrieve information about events such as their timestamp and other contextual data. The
XTIM FESA class provides this functionality. Every XTIM device shadows a specific
central timing event and makes the required information available via RDA3.

When an LTIM is configured to produce an electrical pulse on a CTR output, the pulse is
transported to the receiving equipment via cables. When a pulse has to be fanned out or the
distance is too great for the Transistor-Transistor Logic (TTL) levels, pulse repeaters are
placed in the distribution chain to propagate the signal. For longer distances, we rely on a
CERN-made electrical standard called "Blocking". The pulse-repeaters are VME modules

24.2 Distributed Timing 165

that can be placed in chassis with or without CPUs.

In 2019, more than 7000 LTIMs are used operationally, to orchestrate the vast majority
of accelerator equipment. With such a critical mission, the timing system needs to be
closely monitored in order to detect problems and help with troubleshooting. Recently,
this monitoring has been transferred to the BE-CO solution, COSMOS, as described in
section 19.1.

IX

List of Figures and Tables 167

Glossary . 171

Acronyms . 178

Index . 185

Bibliography . 188

Extras

List of Figures

1.1 The Control System’s three-tier architecture . 13
1.2 CERN Control Centre’s consoles and wall screens 13
1.3 19-inch enclosure with 14 servers . 14
1.4 Front-End Computer with some electronic modules 15
1.5 The databases interact with all the layers . 16
1.6 Architecture of the remote I/O tier . 16

2.1 Control of setting parameter’s value . 18
2.2 Acquisition value streaming use case . 19
2.3 Acquisition value logging use case . 20

3.1 Device-property model class diagram . 22
3.2 Types of properties . 22

4.1 CERN’s accelerator complex . 25
4.2 Unoptimised usage of the accelerators . 25
4.3 Accelerators are time-multiplexed . 26
4.4 The LHC 25ns beam in the PSB, PS, and SPS . 26
4.5 Timing users producing the LHC 25ns beam . 27
4.6 Normal and spare cycles . 27

5.1 Family tree of front-end platforms . 31
5.2 VME read cycle . 33
5.3 ADC based on the FMC mezzanine format . 39
5.4 Typical CERN WorldFIP installation . 43
5.5 WorldFIP macrocycle . 43
5.6 POWERLINK FMC architecture . 45

168

5.7 PTP message exchange . 46
5.8 802.IQ header in an Ethernet frame . 47
5.9 White Rabbit network for LIST distribution . 48
5.10 WRTD event message . 49

6.1 HP ProLiant BL460 - internal view . 52
6.2 Quad servers . 53
6.3 RAID 6 on 5 disks . 54

7.1 Hardware installation workflow . 56
7.2 Generic workflow for Controls Hardware Data Management 57

8.1 Extract of the Red Hat family tree focusing on RHEL 59
8.2 Roles given to a development server . 60
8.3 BuildRoot’s GUI to select the OS’s options . 61

9.1 FPGA architecture of the 100MSa/s 4-channel FMC ADC 64
9.2 Mock Turtle’s architecture . 65

10.1 User and kernel spaces in Linux . 68
10.2 Register definition in Encore . 70
10.3 EDGE’s workflow . 71

11.1 Usefulness of processing in hard/firm and soft RT systems 73
11.2 Design view in the FESA Eclipse plug-in . 74

12.1 Integration of Cheby with other front-end software tools 78
12.2 SILECS workflow . 80

13.1 RBAC login dialog and role picker . 84

14.1 Data exchange during CMW-RDA get/set . 87
14.2 JMS infrastructure and its main users . 88
14.3 JAPC’s main extensions . 90
14.4 JAPC’s main interfaces and their relationships . 91

15.1 Trim history of a power converter in the PS . 96
15.2 Parameter hierarchy for the SPS Q’h control . 97
15.3 Beam processes in a typical SPS supercycle . 97
15.4 LSA high-level architecture . 98
15.5 Status calculation for setting parameters . 99
15.6 Optimising the beam transmission with quad scan 101
15.7 The CESAR GUI . 102
15.8 CALS architecture overview . 104
15.9 NXCALS architecture overview . 105
15.10 PS dump concentrator . 106
15.11 UCAP high-level architecture . 107
15.12 Current Post-Mortem architecture . 108
15.13 Graph layout of Post-Mortem analysis modules . 110

169

15.14 New architecture of the Post-Mortem system . 111
15.15 Alarms console . 112
15.16 LASER architecture . 113

16.1 Hardware Commissioning Sequencer . 115
16.2 LHC Sequencer execution GUI . 117
16.3 Permit tree for LHC ring 1 . 118
16.4 ISIC definition in XML . 118

17.1 JDataViewer point edition . 121
17.2 ASC Bean for enumerated and continuous numeric values 122
17.3 Parameter status displayed in ASC Beans . 122
17.4 Contextual menu for an AscLabel . 123
17.5 Fixed Display for LHC RF timing . 124
17.6 ACW DSL search component . 125
17.7 ACW seed application . 126
17.8 COMRAD development environment . 127
17.9 PS beam extraction devices in a WorkingSet . 128
17.10 Three knobs to control various devices . 129
17.11 Function Editor with several PS functions . 130
17.12 Knob layout configuration in the LSA Application Suite 131
17.13 CCM menu bar for LHCOP . 132

18.1 Dependency graph with conflicts . 135
18.2 Simplified release process . 136
18.3 Dependency graph between BE-CO’s Java components 137

19.1 COSMOS architecture . 140
19.2 COSMOS GUIs . 140
19.3 COSMOS checks . 141
19.4 Components of EDGE and PyUAL for testing . 142
19.5 FESA Navigator with profiling panel . 143
19.6 Tracing architecture . 144

20.1 CCDE architecture . 147
20.2 CCDA architecture . 148

21.1 Magnet components described as Functional Positions 151
21.2 Functional Positions within an assembly . 151

22.1 AFT dashboard for the LHC . 155
22.2 PS Machine Development schedule for week 22 of 2018 156

23.1 Virtual oscilloscope showing the transfer for PS Booster to PS 159
23.2 OASIS front-end model . 160
23.3 Tomoscope application based on OASIS digitisers 161

24.1 Overall architecture of the Timing system . 162
24.2 Central Timing synchronisation signals . 163

170

24.3 BCD editor . 164

Glossary

.NET a software framework developed by Microsoft that runs primarily on Microsoft
Windows. 87, 151

AcqCore shortened version of Acquisition Core. 98–100
ActiveMQ an open source message broker written in Java together with a full Java

Message Service (JMS) client from Apache. 89
ACW A CERN-made framework for web development. 120
AD The Anti-proton Decelerator at CERN. 24
Angular a TypeScript-based open-source front-end web application framework led by

Google. 126
Angular JS a JavaScript-based open-source front-end web application framework main-

tained by Google. 125, 146
ANSI/VITA VITA is an incorporated, non-profit organization of vendors and users having

a common market interest in real-time, modular embedded computing systems. The
VITA Standards Organization (VSO), the standards development arm of VITA, is
accredited as an American National Standards Institute (ANSI) developer and a
submitter of Industry Trade Agreements to the IEC. 38

Ansible open source software that automates software provisioning, configuration man-
agement, and application deployment. 59, 61

APEX Oracle Application Express (APEX) is a web-based software development envi-
ronment that runs on an Oracle database. 146

API An Application Programming Interface (API) is a particular set of rules and specifi-
cations that a software program can follow to access and make use of the services
and resources provided by another particular software program that implements that
API. 28

ARM previously Advanced RISC Machine, originally Acorn RISC Machine, is a family of
reduced instruction set computing architectures for computer processors, configured

172

for various environments. 61, 80
Artifactory Proprietary binary repository manager. 135
AWAKE CERN experiment investigating the use of plasma wakefields driven by a proton

bunch to accelerate charged particles. 104
AXI4 the fourth generation of the ARM Advanced Microcontroller Bus Architecture

(AMBA) interface specification. 63

B&R a member of the ABB group, B&R Industrial Automation GmbH. is an Austrian
manufacturer of automation technology. 45

Bash a Unix shell and command language developed as a free software for the GNU
Project. 140

Bitstream A binary sequence used to transmit digital information such as the gateware of
an FPGA. 39

Blocking CERN-made electrical standard based on 20-Volt pulses. 164
Bootstrap a HTML, CSS, and JS framework for developing responsive, mobile first

projects on the web. 125, 126
BuildRoot a set of Makefiles and patches that simplifies and automates the process of

building a complete and bootable Linux environment for an embedded system. 61

C a general-purpose, imperative computer programming language providing facilities for
low-level manipulation. 66, 78, 140, 141, 180

C++ a general-purpose programming language providing facilities for low-level manipu-
lation. 74, 75, 79, 80, 130, 134, 141, 147

CCC Main control room at CERN. 12
Collectd A Unix daemon that collects, transfers and stores performance data of computers

and network equipmen. 139
Console Computer running high-level graphical applications. 12, 13, 17, 54, 58–60, 98,

112, 122, 167
CRC an error-detecting code commonly used in digital networks and storage devices to

detect accidental changes to raw data. 44
Cron The software utility Cron is a time-based job scheduler in Unix-like computer

operating systems (Wikipedia). 59

Deployment The act of installing and configuring a version of software onto a target
system. 58, 59, 74, 79, 89, 106

Eclipse an integrated development environment used in computer programming. 74, 79,
115, 133

Elasticsearch a search engine providing a distributed, multitenant-capable full-text search
with an HTTP web interface. 144

ELENA a compact ring for cooling and further deceleration of 5.3 MeV antiprotons
delivered by the CERN AD. 26

Encore a CERN-made tool to generate device drivers from VME hardware module
description. 69, 70, 78, 142, 180

Etherbone an FPGA-core that connects Ethernet to internal on-chip Wishbone Buses
permitting any core to talk to any other across Ethernet. http://www.ohwr.org/
projects/etherbone-core. 80

EtherCAT an Ethernet-based fieldbus system, invented by Beckhoff Automation. 44

http://www.ohwr.org/projects/etherbone-core
http://www.ohwr.org/projects/etherbone-core

173

EthernetIP an industrial network protocol that adapts the Common Industrial Protocol
(an industrial protocol for industrial automation applications) to standard Ethernet.
44

Fermilab Fermi National Accelerator Laboratory, located just outside Batavia, Illinois,
near Chicago, is a United States Department of Energy national laboratory specializ-
ing in high-energy particle physics. 58

Font Awesome a suite of pictographic icons for scalable vector graphics on websites. 125
FuseSoC an open-source package manager and a set of build tools for HDL. 65

Git An open-source distributed Version Control System. 133
GitLab A web-based Git-repository manager. 133, 134
GNU An extensive and free collection of computer software, mostly licensed under GPL.

66
Gradle An open-source build automation system. 125, 136
Grafana An open-source, general purpose, web-based dashboard and graph composer.

140, 144
Groovy a Java-syntax-compatible object-oriented programming language for the Java

platform from Apache. 118, 119

HAProxy open source software that provides a high availability load balancer and proxy
server for TCP and HTTP-based applications. 146, 147

I/O The data or information that is passed into or out of a computer
The combination of devices, channels, and techniques controlling the transfer of
information between a CPU and its peripherals. 15

Icinga2 An open-source computer system and network monitoring application. 139, 140
IEEE 1355 a data communications standard for Heterogeneous Interconnect (HIC). 176
IEEE 1588 also known as PTP is a protocol used to synchronize clocks throughout a

computer network. 46
InfluxDB An open-source time series database developed by InfluxData. 139
IntelliJ a Java integrated development environment for developing computer software.

133
ioctl a system call for device-specific input/output operations and other operations which

cannot be expressed by regular system calls. 67
ISOLDE The On-Line Isotope Mass Separator is a radioactive ion beam facility at CERN.

24, 100
IVI Instrument driver specification with aim of unifying hardware and software to achieve

’plug and play’ interoperability for compatible instruments. 48

Java a general-purpose computer-programming language that is concurrent, class-based,
object-oriented, and specifically designed to have as few implementation depen-
dencies as possible. 12, 14, 51, 84, 87–91, 98, 101, 103, 105–107, 110, 115, 116,
118–122, 125, 126, 130, 132, 134, 141, 143, 144, 146, 159, 160, 163, 181

JavaFX a software platform for creating and delivering desktop applications. 120–122,
124, 126

JavaScript a high-level, interpreted programming language that is one of the core tech-
nologies of the World Wide Web. Often abbreviated to JS. 171, 176, 177, 181

174

Jenkins An open source automation server for continuous integration. 134
Jira issue tracking product developed by Atlassian. 55
JSON an open-standard file format that uses human-readable text to transmit data objects

consisting of attribute–value pairs and array data types. 123

Kafka an open-source stream-processing software platform provided by the Apache
Software Foundation. 144

Kernel the core of a computer’s operating system, with complete control over everything
in the system. 37, 58, 60, 61, 67–69

Kibana an open source data visualization plugin for Elasticsearch. 144
Knob A panel in an application for modifying a parameter. 129–131
Kotlin a statically typed, multi-platform general-purpose programming language, with

type inference. 119
Kubernetes an open-source container-orchestration system for automating deployment,

scaling and management of containerized applications. 107

LabVIEW a system-design platform and development environment for a visual program-
ming language from National Instruments. LabVIEW stands for Laboratory Virtual
Instrument Engineering Workbench. 35, 79

LEIR The Low Energy Ion Ring is part of the LHC ion chain at CERN. 25, 28, 89, 114,
119, 163

LHC The Large Hadron Collider is CERN’s largest accelerator. 24
LINAC2 A Linear Accelerator at CERN accelerating protons up to 50 MeV. The LINAC2

was decommisioned in 2018. 25, 28
LINAC3 A Linear heavy ion Accelerator, part of the LHC ion chain at CERN. 25, 28
LINAC4 A Linear Accelerator at CERN accelerating H- up to 160 MeV.. 28, 104
Linux a family of free and open-source software operating systems based on the Linux

kernel by Linus Torvalds. 58, 141
LM32 LatticeMico32 is a 32-bit microprocessor soft core from Lattice Semiconductor

optimized for field-programmable gate arrays (FPGAs). 65
Logstash an open source, server-side data processing pipeline that ingests data from a

multitude of sources simultaneously. 144
LynxOS RTOS is a Unix-like real-time operating system from Lynx Software Technolo-

gies (formerly "LynuxWorks"). 14, 34, 60

Macrocycle Fixed-length WorldFIP cycle. 42, 44, 45
Makerule An algorithm used in InCA/LSA. 95, 100
MBean a managed Java object, similar to a JavaBeans component, that follows the design

patterns set forth in the JMX specification. 141
Middleware software that enables communication and management of data in distributed

applications. 18, 85–87, 89–91
MockTurtle an HDL core of a generic Control System node, based on a deterministic

multicore CPU architecture. 43, 58, 64–66
Modbus a serial communications protocol for use with programmable logic controllers

(PLCs) and industrial electronic devices. 79
MPEG-4 a method of defining compression of audio and visual (AV) digital data. 123
Multiplexing The settings have different values at different times depending on the beam

being produced. 23, 26, 28, 72, 85, 90, 100

175

Netbeans an integrated development environment for Java. 101
nTOF Studies neutron-nucleus interactions for neutron energies ranging from a few meV

to several GeV. 24

Openwire a binary protocol designed for working with message-oriented middleware. It
is the native wire format of Apache’s ActiveMQ. 89

Operating System system software that manages computer hardware and software re-
sources and provides common services for computer programs. E.g. Linux or
Microsoft Windows. 58

OSI model The Open Systems Interconnection model (OSI model) is a conceptual model
that characterises and standardises the communication functions of a telecommuni-
cation or computing system without regard to its underlying internal structure and
technology. 44

Parameter Smallest controllable element in the Control System. 17–22, 69, 90–92,
94–96, 98–101, 106, 107, 109, 117, 121, 122, 124, 128–131, 151

PCI-SIG Peripheral Component Interconnect Special Interest Group is an electronics in-
dustry consortium responsible for specifying the Peripheral Component Interconnect,
PCI-X, and PCI Express computer buses. 34

PICMG Consortium of companies who collaboratively develop open standards for high
performance telecommunications and industrial computing applications. 14

Pnuts a dynamic scripting language for the Java platform. 115, 116
POSIX a family of standards specified by the IEEE Computer Society for maintaining

compatibility between operating systems. 60
POWERLINK a deterministic, real-time, open protocol for standard Ethernet. 44, 45
Profinet an industry technical standard for data communication over Industrial Ethernet.

44
Prometheus A free software ecosystem for monitoring and alerting. 140
PS complex The accelerators below SPS including facilities downstream of the PSB and

the PS such as ISOLDE, AD, etc. 130, 158
PVSS An industrial Control System developed by Siemens. 79
PXE specification describing a standardised client-server environment that boots a soft-

ware assembly, retrieved from a network, on PXE-enabled clients. 60
PyDM Python Display Manager, a Rapid Application Development (RAD) tool developed

by SLAC. 127
PyJAPC A Python binding for JAPC. 127
PyPI A repository of software for the Python programming language. 136
PyQt A Python binding of the cross-platform GUI toolkit Qt, implemented as a Python

plug-in. 127, 143
Python An interpreted, high-level, general-purpose programming language. 69, 106, 120,

126, 127, 134, 136, 140, 142, 146, 147, 175
PyUAL A Python binding for UAL. 142

Qt A cross-platform application framework and widget toolkit for creating desktop and
embedded graphical user interfaces. 80, 122, 124, 175

Qt Designer A graphical tool that lets you build Qt GUIs. 127

RAMSES system used to monitor radiation at CERN. 103

176

Reference value Also known as setting. Desired value of the parameter being controlled.
99, 128

REST REST is an architecture style for designing networked applications and is a
lightweight alternative to mechanisms like RPC (Remote Procedure Calls), in partic-
ular RMI in our case. 147

RS232 standard for serial communication transmission of data, originally introduced in
1960. 67

RS485 standard for serial multi-drop communication transmission of data. 163

S7 a Siemens proprietary protocol that runs between programmable logic controllers
(PLCs) of the Siemens S7-300/400 family. 79

Schneider a French industrial manufacturing company. 79
Setpoint The desired or target value for an essential variable, or process value of a system.

94
Setting see reference value. 10, 17–19, 21–23, 72, 73, 85, 90, 94–102, 128, 130, 131, 158,

159
Siemens One of the largest industrial manufacturing companies in Europe, headquartered

in Munich, Germany. 44, 79, 175–177
SLEquip Obsolete Front-End Computer software framework. 75
SonicMQ a Java Message Service (JMS) broker. 89
SpaceWire a spacecraft communication network based in part on the IEEE 1355 standard

of communications. 44
Spring an application framework and inversion of control container for the Java platform.

84, 125, 126
SPS The Super Proton Synchrotron (SPS) is the second-largest machine in CERN’s

accelerator complex, measuring nearly 7 kilometres in circumference. 25, 26, 28,
94, 95, 97, 98, 100, 103, 104, 108, 109, 114, 160, 163, 164

Stomp Simple Text Oriented Message Protocol, formerly known as TTMP, is a simple
text-based protocol, designed for working with message-oriented middleware. 89

SVN Version-control software. 79
Swing a GUI widget toolkit for Java, part of Oracle’s Java Foundation Classes providing

a graphical user interface for Java programs. 12, 101, 120–124, 126, 130–132, 143,
160, 163

TANGO A free, open source, device-oriented controls toolkit for controlling any kind of
hardware or software and building SCADA systems.. 127

Taurus A python framework for control and data acquisition CLIs and GUIs in scien-
tific/industrial environments. 127

TIMBER Generic application for extracting and visualising logged data. 102, 104
timdt Low-level timing library used in FEC software. 164
Trim A small change to a parameter’s setting value. 18, 90, 94–96, 122, 130
TT40 a transfer line between the SPS and the LHC. 104
TypeScript an open-source programming language developed and maintained by Mi-

crosoft. It is a strict syntactical superset of JavaScript, and adds optional static typing
to the language. 125

U Unit of measurement for electronics components (3U, 6U, 45U). 31, 51, 52

177

Velocity a Java-based template engine that provides a template language to reference
objects defined in Java code. 118, 119

Verilog a hardware description language (HDL) used to model electronic systems, stan-
dardized as IEEE 1364. 63

VHDL a hardware description language (HDL) used to model electronic systems. The V
in VHDL stands for VHSIC (Very High Speed Integrated Circuit). 38, 44, 63

VPX The other name of the VITA 46 standard. 33

Webpack an open-source JavaScript module bundler. 125
White Rabbit Augmented Ethernet Network Protocol. 38, 44, 47, 61, 64, 66, 160, 183
WinCC OA An industrial Control System developed by Siemens. 50, 79, 102
Wishbone Bus an open source hardware computer bus intended to let the parts of an

integrated circuit communicate with each other. 63–65, 78, 80, 172
WorkingSet A table of devices. 98, 128–130

X-motif a widget toolkit for building graphical user interfaces under the X Window
System on Unix. 122, 130, 132

XTIM FESA class to expose central timing distributed information on RDA3. 164

YAML a human-readable data serialization language, commonly used for configuration
files. 78

zeroMQ a high-performance asynchronous messaging library, aimed at use in distributed
or concurrent applications. 86

Acronyms

µRV micro RISC 5. 65

ABI Application Binary Interface. 68
ABS Assembly Breakdown Structure. 151
ACW Accsoft Commons Web. 120, 125, 126, 146, 152, 154, 155, Glossary: ACW
AD Anti-proton Decelerator. 24, 26, 73, 98, Glossary: AD
ADC Analogue-to-Digital Converter. 37–39, 49, 63
AFT Accelerator Fault Tracking. 153–155
AMC Advanced Mezzanine Card. 36, 37
AMT Active Management Technology. 54, 82, 83
API Application Programming Interface. 28, 48, 49, 67–70, 78, 86, 89–91, 101, 102, 104,

110, 118, 134, 141, 142, 145–147, 154, 155, 181, Glossary: API
ASM Accelerator Schedule Management. 153–155
ATCA Advanced Telecommunications Computing Architecture. 36
AWAKE Advanced Proton Driven Plasma Wakefield Acceleration Experiment. 104,

Glossary: AWAKE
AWG Availability Working Group. 153, 154
AXI4 Advanced eXtensible Interface 4. 63, 78, Glossary: AXI4

BC Bus Controller. 41
BCD Beam Coordination Diagram. 26, 162, 163
BE Beams Department. 9, 33
BE-BI Beam Instrumentation group. 9, 116
BE-CO Controls group. 3, 9, 30, 32, 34–41, 54–58, 64, 66, 68, 69, 73, 77, 79, 88, 101,

120, 124, 125, 127, 133, 136, 152–154, 158, 159, 164, 165
BE-OP Operations group. 9
BE-RF Radio Frequency group. 33, 83

179

BIS Beam Interlock System. 116
BLM Beam Loss Monitor. 89, 108, 109
BMA Block Memory Access. 33

C2MON CERN Control and Monitoring Platform. 113
CALS CERN-wide Accelerator Logging Service. 102, 104, 105
CAS CERN Alarm System. 113
CBNG Common Build Next Generation. 134–136
CC7 CERN CentOS 7. 60
CCC CERN Control Centre. 12, 54, Glossary: CCC
CCDA Controls Configuration Data Access. 145–147
CCDB Controls Configuration Database. 56, 61, 69, 75, 78, 83, 106, 112, 131, 143, 145,

146, 160
CCDE Controls Configuration Data Editor. 145–147
CCM Common Console Manager. 131, 132, 146
CCR Controls Computer Room. 12, 54, 82
CCS Controls Configuration Service. 107, 145, 146, 154
CentOS Community Enterprise Operating System. 54, 58, 60, 61, 80, 179
CESAR CERN Experimental Area SoftwAre Renovation. 50, 100–102
CI Continuous Integration. 134
CLI Command Line Interface. 142
CMMS Computerised Maintenance Management System. 55
CMW Controls Middleware. 84–90, 104–106, 126, 134, 143, 144, 163
CMX C++ Management Extension. 141
CompactPCI Compact Peripheral Component Interconnect. 34, 158, 159
COMRAD COntrols Multi-purpose Rapid Application Development. 126, 127
CORBA Common Object Request Broker Architecture. 86, 109, 110
COSMOS Controls Open-Source Montoring System. 139–141, 165
COTS Commercial-Off-The-Shelf. 32, 34, 38–40, 45
CPU Central Processing Unit. 12, 14, 30, 32–35, 43, 50, 51, 57, 61, 65, 66, 80, 82, 86,

165
CRC Cyclic Redundancy Check. 44, Glossary: CRC
CRM Cluster Resource Manager. 59
CSS Cascading Style Sheets. 125
CT Central Timing. 162
CTB Controls Testbed. 134
CTIM Central Timing events. 27
CTR Central Timing Receiver. 162, 164

DB Database. 83, 84, 89
DDS Direct Digital Synthesizer. 47
DHCP Dynamic Host Configuration Protocol. 60
DIAMON Diagnostic and Monitoring System. 139, 141
DIP Data Interchange Protocol. 86
DMA Direct Memory Access. 33, 70
DSL Domain Specific Language. 118, 125

ECC Error-Correcting Code. 51

180

EDGE Encore Driver GEnerator. 69, 70, 78, 142
EDMS Electronic Document Management System. 151
EN Engineering Department. 9, 55, 56
EN-ACE Accelerator Coordination and Engineering group. 55
EN-SMM Survey Mechatronics Measurements group. 9, 37, 39
EP Experimental Physics Department. 136
ESA European Space Agency. 44

FAAS Function As A Service. 107
FCC Future Circular Collider. 152
FDF Fixed Display Framework. 123
FEC Front-End Computer. 14, 21, 23, 30, 43, 45, 60, 69, 72, 73, 75, 80, 83, 84, 88, 94,

96, 98, 99, 108, 109, 114, 159, 163, 176
FESA Front-End Software Architecture. 28, 37, 66, 67, 69, 73–76, 78–80, 83, 84, 90, 91,

101, 102, 105, 106, 122, 130, 134, 141–144, 146, 155, 159, 163, 164, 177
FGC Function Generator Controller. 75, 84, 102, 108, 109, 144
FIFO First In First Out. 66
FIPdiag Diagnostic Agent for WorldFIP. 42
FMC FPGA Mezzanine Card. 38–40, 43, 45, 47, 49, 63, 183
FOSS Free Open Source Software. 59
FP Functional Position. 150, 151
FPGA Field-Programmable Gate Array. 34, 38, 39, 43, 45, 63–65, 69, 77, 79, 80, 180

GCC GNU C Compiler. 66
GCS Group Communication System. 59
GDB GNU Debugger. 66
GM General Module. 75, 102, 147
GMT General Machine Timing. 27, 28, 42, 46, 47, 162–164
GNU GNU’s Not Unix. 66, 180, Glossary: GNU
GPN General Purpose Network. 82, 89, 141
GPS Global Positioning System. 163
GUI Graphical User Interface. 12, 14, 17, 18, 20, 61, 79, 84, 88, 92, 101, 102, 115,

118–122, 127, 130, 131, 139, 141, 146, 147, 160, 163, 175

HBA Host Bus Adapter. 51, 53
HDD Hard Disk Drive. 50, 51
HDL Hardware Description Language. 63–65, 69, 77, 78
HL-LHC High-Luminosity Large Hadron Collider. 44, 103, 152
HMI Human Machine Interface. 120
HPC High Pin Count. 38

I/O Input/Output. 15, 35, 37–39, 67, 75, 80, Glossary: I/O
I2C Inter-Integrated Circuit. 38
IDE Integrated Development Environment. 74, 115, 119, 133, 134
IEPLC Ethernet Interconnection for Programmable Logic Controllers. 79
INB Installation Nucleaire de Base (Basic Nuclear Facility). 102
InCA Injector Control Architecture. 50, 89, 90, 94, 98, 99, 106, 121–123, 128, 129
InforEAM Enterprise Asset Management System. 55, 151

181

IPMI Intelligent Platform Management Interface. 37, 52, 54, 83, 139
IQC Injection Quality Check. 108
ISIC Individual Software Interlock Channel. 117, 118
IT Information Technology Department. 52, 54, 56, 58–60, 83, 144
IVI Interchangeable Virtual Instrumentation. 48, Glossary: IVI

JAPC Java API for Parameter Control. 89–92, 105, 106, 109, 118, 121–124, 175, 181
JBOD Just a Bunch Of Disks. 50, 52, 53
JDBC Java Database Connectivity. 103
JMON JAPC monitoring. 92, 106, 119, 124
JMS Java Message Service. 14, 87–89, 101, 105, 110, 112, 160
JMX Java Management Extensions. 89, 141
JSON JavaScript Object Notation. 123, Glossary: JSON

L865 32-bit SLC5. 60
L866 64-bit SLC6. 60
LAN Local Area Network. 41, 51
LASER LHC Alarms Service. 111–113, 154
LCG LHC Computing Grid. 136
LDB Logging Database. 104
LEMON LHC Era Monitoring. 139
LGPL Lesser General Public Licence. 66, 86
LHC Large Hadron Collider. 24–26, 28, 31, 35, 41, 42, 44, 45, 47, 73, 83, 86, 89, 94, 97,

98, 100, 102–104, 107, 108, 111, 114–117, 120, 123, 128, 136, 139, 150, 152–156,
158, 160, 164, 181, Glossary: LHC

LIC LHC Injector Chain. 25, 26
LIST LHC Instability Study Triggers. 47, 48
LIU LHC Injector Upgrade. 152
LPC Low Pin Count. 38
LS1 Long Shutdown 1. 134
LS2 Long Shutdown 2. 34, 44, 57, 60, 86, 105, 144
LSA LHC Software Architecture. 94, 95, 97, 98, 100–103, 130, 131
LSIC Logical Software Interlock Channel. 117
LTIM Local Timing events. 27, 164, 165
LVM Logical Volume Manager. 53
LXI LAN eXtensions for Instrumentation. 48, 49

MCC Machine Controls Coordinator. 55
MCH MicroTCA Carrier Hub. 36, 37
MD Machine Development. 19, 114, 155, 156
MDB Measurement Database. 104
MPL Mozilla Public Licence. 86
MRG Messaging Real-time and Grid. 60
MTBF Mean Time Between Failure. 54
mTCA Micro Telecommunications Computing Architecture. 36, 37, 159
MTF Manufacturing and Test Folder. Glossary: MTF
MTT Multi-Tasking Timing. 163, 164

182

NFS Network File System. 50, 53, 61, 110
NIC Network Interface Controller. 45
NPM Node.js Package Manager. 125
nTOF Neutron Time-Of-Flight facility. 24, 27, Glossary: nTOF
NXCALS Next CERN Accelerator Logging Service. 105, 110, 111, 144

OASIS Open Analogue Signal Information System. 34, 47, 48, 88, 106, 158–160
OS Operating System. 58, 60, 139, Glossary: Operating System

PCB Printed Circuit Board. 35, 39, 63
PCI Peripheral Component Interconnect. 14, 30, 32, 34–37, 39–41, 51, 64, 68, 70, 82,

142, 159, 182
PCIe PCI Express. 34–39, 43, 45, 51, 63, 64, 68, 70, 82, 159, 183
PCP Priority Code Point. 47
PICMG PCI Industrial Computer Manufacturers Group. 14, 32, 36, Glossary: PICMG
PID Process IDentification number. 141
PLC Programmable Logic Controller. 15, 45, 79, 163
PM Post-Mortem. 108–110
PMA Post-Mortem Analysis. 109, 110
PMFE Post-Mortem Front-End. 108, 109
PPM Pulse-to-Pulse Modulation. 25, 122
PPS Pulse-Per-Second. 163
PS Proton Synchrotron. 24–26, 28, 89, 98, 100, 119
PSB PS Booster. 24–26, 28, 112, 119
PTP Precise-Time-Protocol. 46, 64, 173
PXI PCI eXtension for Instrumentation. 35, 37, 182
PXIe PXI Express. 37–39, 79, 82, 183
PyPI Python Package Index. 136, Glossary: PyPI

RAD Rapid Application Development. 175
RAID Redundant Array of Inexpensive Disks. 51–53, 109
RAM Random Access Memory. 30, 33, 34, 38, 60, 61, 78, 98
RBAC Role-Based Access Control. 83–85, 102, 125
RCP Rich Client Platform. 79
RCS Revision Control System. 133
RDA Remote Device Access. 84–90, 106, 108, 143, 164, 177
REST REpresentational State Transfer. 147, 155, Glossary: REST
RHEL Red Hat Enterprise Linux. 58
RISC Reduced Instruction Set Computer. 65, 178
RMI Remote Method Invocation. 14, 84, 88, 101, 147, 160, 163
RT Real-Time. 18, 20, 77, 78, 141, 159, 164
RTI Remote Terminal Interface. 41
RTM Rear-Transition Module. 31, 37, 39, 164

SAS Serial Attached SCSI. 53
SBC Single Board Computer. 30, 33, 34, 82, 98
SCADA Supervisory Control and Data Acquisition. 79
SCSI Small Computer System Interface. 53, 182

183

SCSS Sassy Cascading Style Sheets. 125
SFP Small Form-factor Pluggable. 38
SHB System Host Board. 32
SIG Special Interest Group. 35
SILECS Software Infrastructure for Low-Level Equipment ControllerS. 77, 79, 80, 163
SIS Software Interlock System. 89, 110, 116–119
SLAC Stanford Linear Accelerator Center. 127, 175
SLC Scientific Linux CERN. 54, 60, 61, 80, 181
SMB-SMS Service Management and Support group. 55
SNMP Simple Network Management Protocol. 37, 47, 83, 139
SNOW Service Now. 55
SPEC Simple PCIe FMC Carrier. 39, 43, 63
SPEXI Simple PXIe FMC Carrier. 39
SQL Structured Query Language. Glossary: SQL
SSD Solid-State Disk. 50, 52
SSH Secure Shell. 59
SVEC Simple VME FMC Carrier. 39, 48, 49
SVN Apache Subversion. 79, 133, Glossary: SVN

TDC Time-to-Digital Converter. 37, 39, 47–49
TE Technology Department. 9
TE-EPC Electrical Power Converters group. 9, 75
TFTP Trivial File Transfer Protocol. 60
TGM TeleGraM. 28, 89, 122
TI Technical Infrastructure. 111, 113
TIM Technical Infrastructure Monitoring. 103
TN Technical Network. 82, 83, 89, 141, 144
TTL Transistor-Transistor Logic. 164

UAL Unified Access Library. 142
UCAP Unified Controls Acquisition and Processing Framework. 106, 107, 119, 124
UFO Unidentified Falling Object. 153
UPS Uninterruptable Power Supply. 54
UTC Coordinated Universal Time. 46, 66

VCS Version Control System. 115, 133, 134
VME Versa Module Europa. 14, 30–36, 38, 39, 41, 49, 63, 64, 68–70, 82, 142, 159, 164,

183
VPX VME PCI eXtension. 33, Glossary: VPX
VXI VME eXtension for Instrumentation. 34, 35, 158, 159
VXS VME Switched Serial. 33

wbgen Wishbone Generator. 64, 65, 78
WorldFIP World Factory Instrumentation Protocol. 31, 39, 41–45, 180
WRTD White Rabbit Trigger Distribution. 44, 48, 160

XML Extensible Markup Language. 79, 112, 118, 119, 123, 124, 143
XPOC eXternal Post-Operation Check. 108

184

Index

802.1Q, 47

access point, 85
Acquisition Core, see InCA Acquisition

Core
Action (FESA)

real-time, 74
server, 74

analysis modules, 109
Apache software foundation, 89
architecture

3-tier, 12
archives, 101
ARM CPU, 80

bare-metal, 135
basic period, 26
beam process, 97

BeamOut, 97
beam sequence, see timing
Beckoff, 79
Big Data, 105
Block Memory Access, 33
BuildRoot, 61
bus

parallel, 32, 34
serial, 35

calculation rules, 100
charting, 120
checks, 140
clustering, 135
CMW

gateway, 86
proxies, 86

command-response, 85
containers, 135
cycle

mapping, 96
non-resident, 96
selector, 28
stamp, 91

data
concentrators, 105
consistency, 74
qualifier, 109

database, 15
dependency management, 134
device driver, see kernel driver
device server, 72
device-property model, 21, 72, 83, 85,

107, 127
directory service, 86

186

drive, 96
driver, see kernel driver

Eclipse
plug-in, 74
Rich Client Platform, 79

enclosure, 30
closed, 30
open, 30

Ethernet, 44, 46, 82
event builder, 105, 106, 109
event-based analysis solution, 110
external conditions, 26

fail-fast, 115, 116
FIDO equations, 26
field, see property field
fieldbus, 41

MIL-1553, 41, 46
White Rabbit, 61
WorldFIP, 41

firm real-time, see real-time
software/system

first update, 23
fixed displays, 145
fundamental data, 103

gateware, 63
geographical addressing, 33
get operation, 21

hard real-time, see real-time
software/system

hardware kit, 37
heat dissipation, 31, 32
HP ProLiant, 50, 83

I/O tier, 15
InCA

Acquisition Core, 98
interlock, 116

JAPC
beans, 91
descriptors, 91, 121
field, 90
monitoring, 106
Parameter, 90

ParameterValue, 90
resolver, 90

Java2D, 121

kernel driver, 67, 142
kernel module, see kernel driver

Lattice Semiconductor, 65
Layout, 150
link rule, 97
LM32, 65
logging, 20, 154, 155
Logging Database, 104

machine protection, 116
MAD X, 95
Mathematica, 87
Measurement Database, 104
MEN SBC A20, 34, 68
MEN SBC A25, 34, 69
message broker, 87
monitoring

off-line, 19
on-line, 19

MS Excel, 87
multiplexing, 23, 25, 26, 72

optics, 95

Parameter
hierarchy, 95
high-level, 17, 95
low-level, 17
LSA, 94
scan, 101
setting, 17, 130
status, 122, 128
virtual acquisition, 100

Passerelle, 87
Permit, 117
platform

Back-End Computer, 12, 50
Console Computer, 54
Front-End Computer, 30

property, see device-property model
acquisition, 21
command, 21
field, 94

187

setting, 21
publish/subscribe, 85
Puppet, 59
PXE Boot, 60

rack-mountable, 12, 30
radiation-tolerant, 41, 42, 44, 45
Razor, 133
RBAC

role, 83
rule, 83

RCP, see Eclipse Rich Client Platform
real-time application framework, 73
real-time software/system, 72
Remote I/O, 15

S7, 79
scalability, 87, 105, 107, 108
selector, see cycle selector
server

front-end computer boot server, see
platform: Back-End Computer

high-level application server, see
platform: Back-End Computer

NFS file server, see platform:
Back-End Computer

set operation, 21
setting

archive, 95
control of, 17
management, 94
reference, 95

Simulation
device access, 91

Single-Sign-On, 125
soft core, 65
soft processor core, see soft core
soft real-time, see real-time

software/system
spare

beam, 26

user, 26
Spring’s Reactor Core, 107
status computation, 99
streams, 107
subscribe operation, 21
supercycle, 26
System management

in-band, 83
out-of-band, 83

telegram, 27
group, 28

TimDT, 28
time series data, 102
timestamp, 19
timing, 17, 24

beam scheduling, 24
domain, 28
event, 24, 27
event distribution, 24
sequencing, see timing beam

scheduling
user, 26

topic (JMS), 89
transaction, 96
transfer.ref, 69
trim

history, 95
request, 18

TSI148, 34
TTY, 67
Tundra TSI148, 68

unit tests, 135
user, see timing

value-item, see device-property model,
94

video streaming, 123
virtual device, 100, 107

web applications, 124

Bibliography

[1] P. Alvarez, J. Lewis, and J. Serrano. “The LHC Central Timing Hardware Imple-
mentation”. In: Proc. of International Conference on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’07), 15-19 October 2007 (Knoxville,
Tennessee, USA), pages 400–402. URL: http://accelconf.web.cern.ch/
AccelConf/ica07/PAPERS/WPPB02.PDF (cited on page 163).

[2] P. Alvarez et al. “FPGA Mezzanine Cards for CERN’s Accelerator Control Sys-
tem”. In: Proc. of International Conference on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’09), 12-16 October 2009 (Kobe,
Japan), pages 376–378. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2009/papers/web002.pdf (cited on page 38).

[3] P. Alvarez et al. “PLL Usage in the General Machine Timing System for the LHC”.
In: Proc. of International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’03), 13-17 October 2003 (Gyeongju, Korea),
pages 116–118. URL: http://accelconf.web.cern.ch/AccelConf/ica03/
PAPERS/MP532.PDF (cited on page 164).

[4] A. Apollonio et al. “LHC Accelerator Fault Tracker - First Experience”. In: Proc.
of International Particle Accelerator Conference (IPAC’16), May 8-13, 2016 (Bu-
san, Korea), pages 1190–1192. URL: http://jacow.org/ipac2016/papers/
tupmb040.pdf (cited on page 153).

[5] M. Arruat et al. “Front-End Software Architecture”. In: Proc. of International Con-
ference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’07),
15-19 October 2007 (Knoxville, Tennessee, USA), pages 310–312. URL: http:
//accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WOPA04.PDF (cited
on page 73).

[6] V. Baggiolini et al. “A Sequencer for the LHC Era”. In: Proc. of International Confer-
ence on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’09),

http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WPPB02.PDF
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WPPB02.PDF
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/web002.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/web002.pdf
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/MP532.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/MP532.PDF
http://jacow.org/ipac2016/papers/tupmb040.pdf
http://jacow.org/ipac2016/papers/tupmb040.pdf
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WOPA04.PDF
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WOPA04.PDF

189

12-16 October 2009 (Kobe, Japan), pages 670–672. URL: http://accelconf.web.
cern.ch/AccelConf/icalepcs2009/papers/thc003.pdf (cited on page 114).

[7] V. Baggiolini et al. “The CESAR Project - Using J2EE for Accelerator Controls”.
In: Proc. of International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’03), 13-17 October 2003 (Gyeongju, Korea),
pages 269–271. URL: http://accelconf.web.cern.ch/AccelConf/ica03/
PAPERS/TU512.PDF (cited on page 101).

[8] E. Van Der Bij et al. “Open Hardware for CERN’s Accelerator Control Sys-
tems”. In: Proc. of International Conference on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’11), 10-14 October 2011 (Grenoble,
France), pages 554–557. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2011/papers/tubault04.pdf (cited on page 40).

[9] R. Billen et al. “Accelerator Data Foundation: How It All Fits Together”. In: Proc. of
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’09), 12-16 October 2009 (Kobe, Japan), pages 61–65. URL:
http : / / accelconf . web . cern . ch / AccelConf / icalepcs2009 / papers /
tub001.pdf (cited on page 145).

[10] A. Bland and S.T. Page. “Upgrades to the Infrastructure and Management of the Op-
erator Workstations and Servers for Run 2 of the CERN Accelerator Complex”. In:
Proc. of International Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’15), 17-23 October 2015 (Melbourne, Australia),
pages 1158–1161. URL: http://jacow.org/icalepcs2015/papers/thhd3o08.
pdf (cited on page 59).

[11] L. Burdzanowski and C. Roderick. “The Renovation of the CERN Controls Config-
uration Service”. In: Proc. of International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’15), 17-23 October 2015 (Mel-
bourne, Australia), pages 103–106. URL: http://jacow.org/icalepcs2015/
papers/mopgf006.pdf (cited on page 146).

[12] L. Burdzanowski et al. “CERN Controls Configuration Service - a Challenge in
Usability”. In: Proc. of International Conference on Accelerator and Large Experi-
mental Control Systems (ICALEPCS’17), 8-13 October 2017 (Barcelona, Spain),
pages 159–165. URL: http://jacow.org/icalepcs2017/papers/tubpl01.
pdf (cited on page 146).

[13] F. Calderini et al. “Moving Towards a Common Alarm Service for the LHC Era”.
In: Proc. of International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’03), 13-17 October 2003 (Gyeongju, Korea),
pages 580–582. URL: http://accelconf.web.cern.ch/AccelConf/ica03/
PAPERS/TH512.PDF (cited on page 113).

[14] M. Cattin et al. “CERN’s FMC KIT”. In: Proc. of International Conference on
Accelerator and Large Experimental Physics Control Systems (ICALEPCS’13),
06-11 October 2013 (San Francisco, CA, USA), pages 1020–1023. URL: http:
//accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/wecocb01.
pdf (cited on pages 38, 40).

[15] J. D. Gonzalez Cobas et al. “Free and Open Source Software at CERN: Integration of
Drivers in the Linux Kernel”. In: Proc. of International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS’11), 10-14 October

http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thc003.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thc003.pdf
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/TU512.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/TU512.PDF
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/tubault04.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/tubault04.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tub001.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tub001.pdf
http://jacow.org/icalepcs2015/papers/thhd3o08.pdf
http://jacow.org/icalepcs2015/papers/thhd3o08.pdf
http://jacow.org/icalepcs2015/papers/mopgf006.pdf
http://jacow.org/icalepcs2015/papers/mopgf006.pdf
http://jacow.org/icalepcs2017/papers/tubpl01.pdf
http://jacow.org/icalepcs2017/papers/tubpl01.pdf
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/TH512.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/TH512.PDF
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/wecocb01.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/wecocb01.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/wecocb01.pdf

190

2011 (Grenoble, France), pages 1248–1251. URL: http://accelconf.web.cern.
ch/AccelConf/icalepcs2011/papers/thchmust04.pdf (cited on page 68).

[16] J. Cuperus, R. Billen, and M. Lelaizant. “The Configuration Database for the CERN
Accelerator Control System”. In: Proc. of International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS’03), 13-17 October
2003 (Gyeongju, Korea), pages 309–311. URL: http://accelconf.web.cern.
ch/AccelConf/ica03/PAPERS/WE114.PDF (cited on page 146).

[17] G. Daniluk et al. “Solving Vendor Lock-in in VME Single Board Computers through
Open-sourcing of the PCIe-VME64x Bridge”. In: Proc. of International Conference
on Accelerator and Large Experimental Control Systems (ICALEPCS’17), 8-13
October 2017 (Barcelona, Spain), pages 131–136. URL: http://jacow.org/
icalepcs2017/papers/tuapl03.pdf (cited on page 34).

[18] G. Daniluk and E. Gousiou. “Plans at CERN for Electronics and Communication
in the Distributed I/O Tier”. In: Proc. of International Conference on Accelerator
and Large Experimental Control Systems (ICALEPCS’17), 8-13 October 2017
(Barcelona, Spain), pages 1552–1556. URL: http://jacow.org/icalepcs2017/
papers/thpha071.pdf (cited on page 15).

[19] S. Deghaye et al. “CERN Proton Synchrotron Complex High-Level Controls Ren-
ovation”. In: Proc. of International Conference on Accelerator and Large Exper-
imental Physics Control Systems (ICALEPCS’09), 12-16 October 2009 (Kobe,
Japan), pages 638–640. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2009/papers/tha005.pdf (cited on page 94).

[20] S. Deghaye et al. “Hardware Abstraction Layer in OASIS”. In: Proc. of Interna-
tional Conference on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’05), 10-14 October 2005 (Geneva, Switzerland), pages 1–5. URL:
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/P1_
090.pdf (cited on page 159).

[21] S. Deghaye et al. “OASIS: a New System to Acquire and Display the Analog Signals
for LHC”. In: Proc. of International Conference on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’03), 13-17 October 2003 (Gyeongju,
Korea), pages 359–361. URL: http://accelconf.web.cern.ch/AccelConf/
ica03/PAPERS/WP502.PDF (cited on page 158).

[22] S. Deghaye et al. “OASIS: Status Report”. In: Proc. of International Conference
on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’05),
10-14 October 2005 (Geneva, Switzerland), pages 1–6. URL: http://accelconf.
web.cern.ch/AccelConf/ica05/proceedings/pdf/O4_007.pdf (cited on
page 158).

[23] L. N. Drosdal et al. “Automatic Injection Quality Checks for the LHC”. In: Proc. of
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’11), 10-14 October 2011 (Grenoble, France), pages 1077–
1080. URL: http://accelconf.web.cern.ch/AccelConf/icalepcs2011/
papers/wepmu011.pdf (cited on page 108).

[24] A. Dworak and J.C. Bau. “Decoupling CERN Accelerators”. In: Proc. of Inter-
national Conference on Accelerator and Large Experimental Control Systems
(ICALEPCS’17), 8-13 October 2017 (Barcelona, Spain), pages 608–611. URL:
http://jacow.org/icalepcs2017/papers/tupha084.pdf (cited on page 26).

http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/thchmust04.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/thchmust04.pdf
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/WE114.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/WE114.PDF
http://jacow.org/icalepcs2017/papers/tuapl03.pdf
http://jacow.org/icalepcs2017/papers/tuapl03.pdf
http://jacow.org/icalepcs2017/papers/thpha071.pdf
http://jacow.org/icalepcs2017/papers/thpha071.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tha005.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tha005.pdf
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/P1_090.pdf
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/P1_090.pdf
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/WP502.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/WP502.PDF
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/O4_007.pdf
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/O4_007.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/wepmu011.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/wepmu011.pdf
http://jacow.org/icalepcs2017/papers/tupha084.pdf

191

[25] F. Ehm et al. “CMX - a Generic Solution to Expose Monitoring Metrics in C and
C++ Applications”. In: Proc. of International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’13), 06-11 October 2013 (San
Francisco, CA, USA), pages 1118–1121. URL: http://accelconf.web.cern.
ch/AccelConf/ICALEPCS2013/papers/thppc014.pdf (cited on page 141).

[26] E. Fejes. “Adapting Gradle for the CERN Accelerator Controls System”. In: Proc. of
Gradle Summit 2017 (Palo Alto, CA, USA). URL: https://www.gradlesummit.
com/topics/adapting_gradle_for_the_cern_accelerator_control_
system (cited on page 136).

[27] E. Fortescue-Beck, R. Billen, and P. Gomes. “The LHC Functional Layout Database
as Foundation of the Controls System”. In: Proc. of International Conference on
Accelerator and Large Experimental Physics Control Systems (ICALEPCS’11), 10-
14 October 2011 (Grenoble, France), pages 147–150. URL: http://accelconf.
web.cern.ch/AccelConf/icalepcs2011/papers/mopkn024.pdf (cited on
page 150).

[28] M. Gabriel and R. Gorbonosov. “Disruptor - Using High Performance, Low Latency
Technology in the CERN Control System”. In: Proc. of International Conference
on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’15),
17-23 October 2015 (Melbourne, Australia), pages 606–609. URL: http://jacow.
org/icalepcs2015/papers/web3o03.pdf (cited on page 101).

[29] L. Gallerani. “Large Graph Visualization of Millions of Connections in the CERN
Control System Network Traffic: Analysis and Design of Routing and Firewall
Rules with a New Approach”. In: Proc. of International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS’15), 17-23 Octo-
ber 2015 (Melbourne, Australia), pages 799–801. URL: http://jacow.org/
icalepcs2015/papers/wepgf045.pdf (cited on page 82).

[30] J.C. Garnier et al. “Smooth Migration of CERN Post Mortem Service to a Hori-
zontally Scalable Service”. In: Proc. of International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS’15), 17-23 Octo-
ber 2015 (Melbourne, Australia), pages 806–809. URL: http://jacow.org/
icalepcs2015/papers/wepgf047.pdf (cited on page 111).

[31] R. Gorbonosov et al. “Plug-in Based Analysis Framework for LHC Post-Mortem
Analysis”. In: Proc. of International Conference on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS’13), 06-11 October 2013 (San
Francisco, CA, USA), pages 446–448. URL: http://accelconf.web.cern.ch/
AccelConf/ICALEPCS2013/papers/moppc143.pdf (cited on page 109).

[32] F. Hoguin and S. Deghaye. “Solving the Synchronization Problem in Multi-Core
Embedded Real-Time Systems”. In: Proc. of International Conference on Accel-
erator and Large Experimental Physics Control Systems (ICALEPCS’15), 17-23
October 2015 (Melbourne, Australia), pages 942–946. URL: http://accelconf.
web.cern.ch/AccelConf/ICALEPCS2015/papers/wepgf102.pdf (cited on
page 74).

[33] D. Jacquet. “Breaking the wall between operational and expert tools”. In: Proc. of
the 2016 Evian workshop on LHC beam operation, 13-15 December 2016 (Evian,
France), pages 157–160. URL: http://cds.cern.ch/record/2289585/files/
Evian_CERN-ACC-2017-094.pdf (cited on page 127).

http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thppc014.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thppc014.pdf
https://www.gradlesummit.com/topics/adapting_gradle_for_the_cern_accelerator_control_system
https://www.gradlesummit.com/topics/adapting_gradle_for_the_cern_accelerator_control_system
https://www.gradlesummit.com/topics/adapting_gradle_for_the_cern_accelerator_control_system
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mopkn024.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mopkn024.pdf
http://jacow.org/icalepcs2015/papers/web3o03.pdf
http://jacow.org/icalepcs2015/papers/web3o03.pdf
http://jacow.org/icalepcs2015/papers/wepgf045.pdf
http://jacow.org/icalepcs2015/papers/wepgf045.pdf
http://jacow.org/icalepcs2015/papers/wepgf047.pdf
http://jacow.org/icalepcs2015/papers/wepgf047.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/moppc143.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/moppc143.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/wepgf102.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/wepgf102.pdf
http://cds.cern.ch/record/2289585/files/Evian_CERN-ACC-2017-094.pdf
http://cds.cern.ch/record/2289585/files/Evian_CERN-ACC-2017-094.pdf

192

[34] K.Sigerud et al. “First Operational Experience With LASER”. In: Proc. of In-
ternational Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’05), 10-14 October 2005 (Geneva, Switzerland). URL: https:
// edms .cern. ch/ui /file/1825056/ 1/ICALEPCS- 2005 .pdf (cited on
page 113).

[35] Q. King. “Status of the LHC Power Converter Controls”. In: Proc. of Interna-
tional Conference on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’09), 12-16 October 2009 (Kobe, Japan), pages 4–6. URL: https:
//accelconf.web.cern.ch/accelconf/icalepcs2009/papers/mob003.pdf
(cited on page 75).

[36] G. Kruk, O. Da Silva Alves, and L. Molinari. “JavaFX Charts: Implementation of
Missing Features”. In: Proc. of International Conference on Accelerator and Large
Experimental Control Systems (ICALEPCS’17), 8-13 October 2017 (Barcelona,
Spain), pages 866–868. URL: http://jacow.org/icalepcs2017/papers/
tupha186.pdf (cited on page 121).

[37] G. Kruk and M. Peryt. “JDataViewer - Java-based Charting Library”. In: Proc. of
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’09), 12-16 October 2009 (Kobe, Japan), pages 856–858. URL:
http : / / accelconf . web . cern . ch / AccelConf / icalepcs2009 / papers /
thp093.pdf (cited on page 120).

[38] G. Kruk et al. “How to Successfully Renovate a Controls System? - Lessons Learned
from the Renovation of the CERN Injectors’ Controls Software”. In: Proc. of
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’13), 06-11 October 2013 (San Francisco, CA, USA), pages 43–
46. URL: http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/
papers/mocobab05.pdf (cited on page 94).

[39] G. Kruk et al. “LHC Software Architecture [LSA] – Evolution Toward LHC
Beam Commissioning”. In: Proc. of International Conference on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’07), 15-19 October 2007
(Knoxville, Tennessee, USA), pages 307–309. URL: http://accelconf.web.
cern.ch/AccelConf/ica07/PAPERS/WOPA03.PDF (cited on page 94).

[40] J. Lewis et al. “The Evolution of the CERN SPS Timing System for the LHC
Era”. In: Proc. of International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’03), 13-17 October 2003 (Gyeongju, Korea),
pages 125–127. URL: http://accelconf.web.cern.ch/AccelConf/ica03/
PAPERS/MP535.PDF (cited on page 24).

[41] F. Locci and S. Magnoni. “IEPLC Framework, Automated Communication in a
Heterogeneous Control System Environment”. In: Proc. of International Conference
on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’13),
06-11 October 2013 (San Francisco, CA, USA), pages 139–142. URL: http://
accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/moppc031.
pdf (cited on page 79).

[42] N. Magnin et al. “External Post-Operational Checks for the LHC Beam Dumping
System”. In: Proc. of International Conference on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’11), 10-14 October 2011 (Grenoble,

https://edms.cern.ch/ui/file/1825056/1/ICALEPCS-2005.pdf
https://edms.cern.ch/ui/file/1825056/1/ICALEPCS-2005.pdf
https://accelconf.web.cern.ch/accelconf/icalepcs2009/papers/mob003.pdf
https://accelconf.web.cern.ch/accelconf/icalepcs2009/papers/mob003.pdf
http://jacow.org/icalepcs2017/papers/tupha186.pdf
http://jacow.org/icalepcs2017/papers/tupha186.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thp093.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thp093.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/mocobab05.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/mocobab05.pdf
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WOPA03.PDF
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/WOPA03.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/MP535.PDF
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/MP535.PDF
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/moppc031.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/moppc031.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/moppc031.pdf

193

France), pages 1111–1114. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2011/papers/wepmu023.pdf (cited on page 108).

[43] S. Matthies et al. “FESA3 Integration in GSI for FAIR”. In: Proc. of Personal
Computers and Particle Accelerator Controls (PCaPAC), 14-17 October 2014
(Karlsruhe, Germany), pages 43–45. URL: http://accelconf.web.cern.ch/
AccelConf/PCaPAC2014/papers/wpo006.pdf (cited on page 75).

[44] C. Pascual-Izarra et al. “Taurus big and small: from particle accelerators to desktop
labs”. In: Proc. of International Conference on Accelerator and Large Experimental
Control Systems (ICALEPCS’17), 8-13 October 2017 (Barcelona, Spain), pages 166–
169. URL: http://jacow.org/icalepcs2017/papers/tubpl02.pdf (cited on
page 127).

[45] G. Penacoba et al. “Design of an FPGA-based Radiation Tolerant Agent for World-
FIP Fieldbus”. In: Proc. of International Particle Accelerator Conference (IPAC’11),
September 4-9, 2011 (San Sebastian, Spain), pages 1780–1782. URL: http://
accelconf.web.cern.ch/AccelConf/IPAC2011/papers/tups102.pdf (cited
on page 43).

[46] M. Peryt et al. “Database and Interface Modifications: Change Management Without
Affecting the Client”. In: Proc. of International Conference on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’11), 10-14 October 2011
(Grenoble, France), pages 106–109. URL: http://accelconf.web.cern.ch/
AccelConf/icalepcs2011/papers/MOPKN010.pdf (cited on page 146).

[47] T. Rendahl. “Pydm: a python alternative to edm”. In: EPICS Collaboration Meeting,
16-23 September 2016 (Tennessee, USA). URL: http://conference.sns.gov/
event/11/session/1/contribution/45/attachments/131/345/PYDM_
.pdf (cited on page 127).

[48] C. Roderick. “CERN accelerator data logging and analysis”. In: 2013 IEEE Nuclear
Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 27 October
- 2 November 2013 (Seoul, South Korea). URL: https://ieeexplore.ieee.org/
document/6829573 (cited on page 103).

[49] C. Roderick and R. Billen. “The LHC Logging Service : Capturing, storing and using
time-series data for the world’s largest scientific instrument”. In: UK Oracle User
Group Conference and Exhibition (UKOUG), 14 - 17 November 2006 (Birmingham,
UK), pages 414–416. URL: http://cds.cern.ch/record/1000757/files/ab-
note-2006-046.pdf (cited on page 102).

[50] C. Roderick, R. Billen, and D.D. Teixeira. “Instrumentation of the CERN Ac-
celerator Logging Service: Ensuring Performance, Scalability, Maintenance and
Diagnostics”. In: Proc. of International Conference on Accelerator and Large Exper-
imental Physics Control Systems (ICALEPCS’11), 10-14 October 2011 (Grenoble,
France), pages 1232–1235. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2011/papers/thchaust06.pdf (cited on page 103).

[51] C. Roderick, L. Burdzanowski, and G. Kruk. “The CERN Accelerator Logging Ser-
vice - 10 Years in Operation: A Look at the Past, Present, and Future”. In: Proc. of In-
ternational Conference on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’13), 06-11 October 2013 (San Francisco, CA, USA), pages 612–
614. URL: http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/
papers/tuppc028.pdf (cited on page 103).

http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/wepmu023.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/wepmu023.pdf
http://accelconf.web.cern.ch/AccelConf/PCaPAC2014/papers/wpo006.pdf
http://accelconf.web.cern.ch/AccelConf/PCaPAC2014/papers/wpo006.pdf
http://jacow.org/icalepcs2017/papers/tubpl02.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2011/papers/tups102.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2011/papers/tups102.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/MOPKN010.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/MOPKN010.pdf
http://conference.sns.gov/event/11/session/1/contribution/45/attachments/131/345/PYDM_.pdf
http://conference.sns.gov/event/11/session/1/contribution/45/attachments/131/345/PYDM_.pdf
http://conference.sns.gov/event/11/session/1/contribution/45/attachments/131/345/PYDM_.pdf
https://ieeexplore.ieee.org/document/6829573
https://ieeexplore.ieee.org/document/6829573
http://cds.cern.ch/record/1000757/files/ab-note-2006-046.pdf
http://cds.cern.ch/record/1000757/files/ab-note-2006-046.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/thchaust06.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/thchaust06.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tuppc028.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tuppc028.pdf

194

[52] C. Roderick et al. “Accelerator Fault Tracking at CERN”. In: Proc. of Inter-
national Conference on Accelerator and Large Experimental Control Systems
(ICALEPCS’17), 8-13 October 2017 (Barcelona, Spain), pages 397–400. URL: http:
//jacow.org/icalepcs2017/papers/tupha013.pdf (cited on page 153).

[53] C. Roderick et al. “The CERN Accelerator Measurement Database: On the Road to
Federation”. In: Proc. of International Conference on Accelerator and Large Exper-
imental Physics Control Systems (ICALEPCS’11), 10-14 October 2011 (Grenoble,
France), pages 102–105. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2011/papers/mopkn009.pdf (cited on page 104).

[54] C. Roderick et al. “The LHC Logging Service: Handling Terabytes of On-line
Data”. In: Proc. of International Conference on Accelerator and Large Exper-
imental Physics Control Systems (ICALEPCS’09), 12-16 October 2009 (Kobe,
Japan), pages 414–416. URL: http://accelconf.web.cern.ch/AccelConf/
icalepcs2009/papers/wep005.pdf (cited on page 103).

[55] P. Le Roux, R. Billen, and J. Mariethoz. “The LHC Functional Layout Database
as Foundation of the Controls System”. In: Proc. of International Conference on
Accelerator and Large Experimental Physics Control Systems (ICALEPCS’07),
15-19 October 2007 (Knoxville, Tennessee, USA), pages 526–528. URL: http:
//accelconf.web.cern.ch/AccelConf/ica07/PAPERS/RPPA03.PDF (cited
on page 150).

[56] P. Le Roux et al. “LHC Reference Database: Towards a Mechanical, Optical and
Electrical Layout Database”. In: Proc. of European Particle Accelerator Conference
(EPAC ’04), 05-09 July 2004 (Lucerne, Switzerland), pages 1882–1884. URL: http:
//accelconf.web.cern.ch/accelconf/e04/PAPERS/WEPLT025.PDF (cited
on page 150).

[57] A. Rubini et al. “ZIO: The Ultimate Linux I/O Framework”. In: Proc. of Interna-
tional Conference on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’13), 06-11 October 2013 (San Francisco, CA, USA), pages 77–80.
URL: http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/
momib09.pdf (cited on page 68).

[58] A. Schwinn et al. “FESA3 – The New Front-End Software Framework at CERN and
the FAIR Facility”. In: Proc. of Personal Computers and Particle Accelerator Con-
trols (PCaPAC), 5-8 October 2010 (Saskatoon, Saskatchewan, Canada), pages 22–
26. URL: https : / / accelconf . web . cern . ch / accelconf / pcapac2010 /
papers/wecoaa03.pdf (cited on page 75).

[59] J. Serrano et al. “The White Rabbit Project”. In: Proc. of International Conference
on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’09),
12-16 October 2009 (Kobe, Japan), pages 93–95. URL: http://accelconf.web.
cern.ch/AccelConf/icalepcs2009/papers/tuc004.pdf (cited on page 46).

[60] P. Sollander et al. “Alarms Configuration Management”. In: Proc. of Interna-
tional Conference on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’07), 15-19 October 2007 (Knoxville, Tennessee, USA), pages 606–608.
URL: http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/RPPB03.
PDF (cited on page 111).

[61] A. Tovar et al. “Validation of the Data Consolidation in Layout Database for the
LHC Tunnel Cryogenics Controls Package”. In: Proc. of International Conference

http://jacow.org/icalepcs2017/papers/tupha013.pdf
http://jacow.org/icalepcs2017/papers/tupha013.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mopkn009.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mopkn009.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/wep005.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/wep005.pdf
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/RPPA03.PDF
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/RPPA03.PDF
http://accelconf.web.cern.ch/accelconf/e04/PAPERS/WEPLT025.PDF
http://accelconf.web.cern.ch/accelconf/e04/PAPERS/WEPLT025.PDF
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/momib09.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/momib09.pdf
https://accelconf.web.cern.ch/accelconf/pcapac2010/papers/wecoaa03.pdf
https://accelconf.web.cern.ch/accelconf/pcapac2010/papers/wecoaa03.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tuc004.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tuc004.pdf
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/RPPB03.PDF
http://accelconf.web.cern.ch/AccelConf/ica07/PAPERS/RPPB03.PDF

195

on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’13),
06-11 October 2013 (San Francisco, CA, USA), pages 1197–1200. URL: http:
//accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thppc057.
pdf (cited on page 150).

[62] T. Wlostowski, J. Serrano, and F. Vaga. “Developing Distributed Hard Real-Time
Software Systems Using FPGAs and Soft Cores”. In: Proc. of International Confer-
ence on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’15),
17-23 October 2015 (Melbourne, Australia), pages 1073–1078. URL: http://
accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/thha2i01.
pdf (cited on page 65).

[63] T. Wlostowski et al. “Trigger and RF Distribution Using White Rabbit”. In: Proc. of
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’15), 17-23 October 2015 (Melbourne, Australia), pages 619–
623. URL: http://jacow.org/icalepcs2015/papers/wec3o01.pdf (cited on
page 47).

[64] Z. Zaharieva and R. Billen. “Rapid Development of Database Interfaces with
Oracle APEX, Used for the Controls Systems at CERN”. In: Proc. of Interna-
tional Conference on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’09), 12-16 October 2009 (Kobe, Japan), pages 883–885. URL: http:
//accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thp108.pdf
(cited on page 146).

[65] Z. Zaharieva, M. Martin Marquez, and M. Peryt. “Database Foundation for the
Configuration Management of the CERN Accelerator Controls Systems”. In: Proc.
of International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’11), 10-14 October 2011 (Grenoble, France), pages 48–51.
URL: http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/
momau004.pdf (cited on page 145).

[66] M. Zerlauth et al. “The LHC Post Mortem Analysis Framework”. In: Proc. of
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’09), 12-16 October 2009 (Kobe, Japan), pages 131–133. URL:
http : / / accelconf . web . cern . ch / AccelConf / icalepcs2009 / papers /
tup021.pdf (cited on page 108).

http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thppc057.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thppc057.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/thppc057.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/thha2i01.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/thha2i01.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/thha2i01.pdf
http://jacow.org/icalepcs2015/papers/wec3o01.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thp108.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/thp108.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/momau004.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/momau004.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tup021.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2009/papers/tup021.pdf

	Introduction
	Why a Control System?

	Part I — High-Level Concepts
	1 Physical Layers
	1.1 Control-Room Computers
	1.2 Back-End Servers
	1.3 Front-End Computers
	1.4 Databases
	1.5 Remote I/O

	2 Typical Use Cases
	2.1 Control of Setting Values
	2.2 Monitoring of Accelerator Variables

	3 Device-Property model
	4 Timing
	4.1 Sequencing
	4.2 Events and Data
	4.3 Cycle Selector

	Part II — Controls Hardware
	5 FEC Platforms
	5.1 Open Enclosures
	5.2 Closed Enclosures
	5.3 Backplanes and Buses
	5.4 CO-Supported Electronic Modules aka CO Kit
	5.5 Fieldbuses
	5.6 White Rabbit

	6 Servers and Consoles
	6.1 Server Platforms
	6.2 Consoles

	7 Hardware Management
	8 Operating Systems
	8.1 Servers and Consoles
	8.2 Front-End Computers
	8.3 White Rabbit Switches

	Part III — Front-End Software
	9 FPGA Gateware
	9.1 HDL Development Tools
	9.2 Mock Turtle

	10 Kernel Software
	10.1 Kernel Software Development Tools

	11 FEC Applications
	11.1 Real Time Systems
	11.2 FESA
	11.3 Other Real-Time Frameworks
	11.4 Generic FESA Classes

	12 Low-Level Development
	12.1 Cheby
	12.2 SILECS

	Part IV — Communications
	13 Networking
	13.1 Ethernet Networks
	13.2 RBAC

	14 Middleware
	14.1 CMW-RDA
	14.2 JMS
	14.3 JAPC

	Part V — High-Level Software
	15 Core Services
	15.1 InCA/LSA
	15.2 CESAR
	15.3 Logging
	15.4 Data Concentrators
	15.5 Unified Controls Acquisition Processing
	15.6 Post-Mortem
	15.7 Alarms

	16 Automation
	16.1 Sequencers
	16.2 SIS

	17 User Interfaces and Tools
	17.1 Graphical Frameworks and Components
	17.2 Generic Applications

	18 High-Level Development Tools
	18.1 Best Practices
	18.2 Build Process

	Part VI — Transversal Components
	19 Monitoring, Testing and Diagnostics
	19.1 COSMOS
	19.2 Low-level Test Tools
	19.3 Tracing

	20 Configuration
	20.1 Controls Configuration Database
	20.2 Controls Configuration Data Editor
	20.3 Controls Configuration Data Access API

	Part VII — Data Management
	21 Layout
	22 Organising Accelerator Operation
	22.1 AFT
	22.2 ASM

	Part VIII — Control System Applications
	23 OASIS
	24 Timing
	24.1 Central Timing
	24.2 Distributed Timing

	Part IX — Extras
	List of Figures and Tables
	Glossary
	Acronyms
	Index
	Bibliography

